3,609 research outputs found

    Some determinants of organizational success

    Get PDF
    Organizational efficiency and productivity determined by variables associated with economics, psychology, and sociolog

    Evaporite karst geohazards in the Delaware Basin, Texas: review of traditional karst studies coupled with geophysical and remote sensing characterization

    Get PDF
    Evaporite karst throughout the Gypsum Plain of west Texas is complex and extensive, including manifestations ranging from intrastratal brecciation and hypogene caves to epigene features and suffosion caves. Recent advances in hydrocarbon exploration and extraction has resulted in increased infrastructure development and utilization in the area; as a result, delineation and characterization of potential karst geohazards throughout the region have become a greater concern. While traditional karst surveys are essential for delineating the subsurface extent and morphology of individual caves for speleogenetic interpretation, these methods tend to underestimate the total extent of karst development and require surficial manifestation of karst phenomena. Therefore, this study utilizes a composite suite of remote sensing and traditional field studies for improved karst delineation and detection of potential karst geohazards within gypsum karst. Color InfraRed (CIR) imagery were utilized for delineation of lineaments associated with fractures, while Normalized Density Vegetation Index (NDVI) analyses were used to delineate regions of increased moisture flux and probable zones of shallow karst development. Digital Elevation Models (DEM) constructed from high-resolution LiDAR (Light Detection and Ranging) data were used to spatially interpret sinkholes, while analyses of LiDAR intensity data were used in a novel way to categorize local variations in surface geology. Resistivity data, including both direct current (DC) and capacitively coupled (CC) resistivity analyses, were acquired and interpreted throughout the study area to delineate potential shallow karst geohazards specifically associated with roadways of geohazard concern; however, detailed knowledge of the surrounding geology and local karst development proved essential for proper interpretation of resistivity inversions. The composite suite of traditional field investigations and remotely sensed karst delineations used in this study illustrate how complex gypsum karst terrains can be characterized with greater detail through the utilization of rapidly advancing technologies, especially in arid environments with low vegetation densities

    Understanding the Organizational Impact of Radio Frequency Identification Technology: A Holistic View

    Get PDF
    The adoption and deployment of radio frequency identification technology (RFID) in retail supply chains results in an influx of data, supporting the development of better information and increased knowledge. This impacts not only an organization’s information technology infrastructure, but also the quality and timeliness of its business intelligence and decision-making. This paper provides an introduction to RFID technology and surveys a variety of its applications, then examines and discusses the impact of RFID technology on organizational IT infrastructure, business intelligence, and decision-making. Propositions are advanced to provide the basis for the development of specific hypotheses to be empirically tested in future studies, and a conceptual research framework for understanding the organizational impact of RFID technology is proposed. Available at: https://aisel.aisnet.org/pajais/vol2/iss2/3

    Unusual low-temperature thermopower in the one-dimensional Hubbard model

    Full text link
    The low-temperature thermoelectric power of the repulsive-interaction one-dimensional Hubbard model is calculated using an asymptotic Bethe ansatz for holons and spinons. The competition between the entropy carried by the holons and that carried by the backflow of the spinons gives rise to an unusual temperature and doping dependence of the thermopower which is qualitatively similar to that observed in the normal state of high-TcT_{c} superconductors.Comment: 11 pages, REVTEX 3.

    Stability and Symmetry Breaking in Metal Nanowires

    Full text link
    A general linear stability analysis of simple metal nanowires is presented using a continuum approach which correctly accounts for material-specific surface properties and electronic quantum-size effects. The competition between surface tension and electron-shell effects leads to a complex landscape of stable structures as a function of diameter, cross section, and temperature. By considering arbitrary symmetry-breaking deformations, it is shown that the cylinder is the only generically stable structure. Nevertheless, a plethora of structures with broken axial symmetry is found at low conductance values, including wires with quadrupolar, hexapolar and octupolar cross sections. These non-integrable shapes are compared to previous results on elliptical cross sections, and their material-dependent relative stability is discussed.Comment: 12 pages, 4 figure

    Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects

    Full text link
    We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.Comment: Replaced with published version; 5 page

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page

    Coherent Resonant Tunneling Through an Artificial Molecule

    Full text link
    Coherent resonant tunneling through an artificial molecule of quantum dots in an inhomogeneous magnetic field is investigated using an extended Hubbard model. Both the multiterminal conductance of an array of quantum dots and the persistent current of a quantum dot molecule embedded in an Aharanov-Bohm ring are calculated. The conductance and persistent current are calculated analytically for the case of a double quantum dot and numerically for larger arrays using a multi-terminal Breit-Wigner type formula, which allows for the explicit inclusion of inelastic processes. Cotunneling corrections to the persistent current are also investigated, and it is shown that the sign of the persistent current on resonance may be used to determine the spin quantum numbers of the ground state and low-lying excited states of an artificial molecule. An inhomogeneous magnetic field is found to strongly suppress transport due to pinning of the spin-density-wave ground state of the system, and giant magnetoresistance is predicted to result from the ferromagnetic transition induced by a uniform external magnetic field.Comment: 23 pages, 12 figure
    corecore