107 research outputs found

    Ribosomal RNA Gene Restriction Patterns Provide Increased Sensitivity for Typing Salmonella typhi Strains

    Get PDF
    To date, epidemiologic associations among strains of Salmonella typhi are based exclusively on phage typing, which may be of limited value if a common phage type is involved. Analysis of ribosomal RNA gene restriction patterns allows separation of most independently isolated strains of identical phage types. The sensitivity of the method is dependent on the restriction enzymes used to digest chromosomal DNA. It was highest for PstI, which separated 16 of 20 strains that belonged to 8 phage types including 3 untypable strains. Three strains differed in their phage types but had identical ribosomal RNA gene restriction patterns. Also, two pairs of strains indistinguishable by phage typing exhibited identical patterns; however, two of these strains were expected to be identical because they were isolated from two patients who were likely exposed to the same source. Ribosomal RNA gene restriction patterns appear to be stable. Thus, the method may complement phage typing and aid in further differentiation of strain

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    HIV-1 pol Diversity among Female Bar and Hotel Workers in Northern Tanzania

    Get PDF
    A national ART program was launched in Tanzania in October 2004. Due to the existence of multiple HIV-1 subtypes and recombinant viruses co-circulating in Tanzania, it is important to monitor rates of drug resistance. The present study determined the prevalence of HIV-1 drug resistance mutations among ART-naive female bar and hotel workers, a high-risk population for HIV-1 infection in Moshi, Tanzania. A partial HIV-1 pol gene was analyzed by single-genome amplification and sequencing in 45 subjects (622 pol sequences total; median number of sequences per subject, 13; IQR 5–20) in samples collected in 2005. The prevalence of HIV-1 subtypes A1, C, and D, and inter-subtype recombinant viruses, was 36%, 29%, 9% and 27%, respectively. Thirteen different recombination patterns included D/A1/D, C/A1, A1/C/A1, A1/U/A1, C/U/A1, C/A1, U/D/U, D/A1/D, A1/C, A1/C, A2/C/A2, CRF10_CD/C/CRF10_CD and CRF35_AD/A1/CRF35_AD. CRF35_AD was identified in Tanzania for the first time. All recombinant viruses in this study were unique, suggesting ongoing recombination processes among circulating HIV-1 variants. The prevalence of multiple infections in this population was 16% (n = 7). Primary HIV-1 drug resistance mutations to RT inhibitors were identified in three (7%) subjects (K65R plus Y181C; N60D; and V106M). In some subjects, polymorphisms were observed at the RT positions 41, 69, 75, 98, 101, 179, 190, and 215. Secondary mutations associated with NNRTIs were observed at the RT positions 90 (7%) and 138 (6%). In the protease gene, three subjects (7%) had M46I/L mutations. All subjects in this study had HIV-1 subtype-specific natural polymorphisms at positions 36, 69, 89 and 93 that are associated with drug resistance in HIV-1 subtype B. These results suggested that HIV-1 drug resistance mutations and natural polymorphisms existed in this population before the initiation of the national ART program. With increasing use of ARV, these results highlight the importance of drug resistance monitoring in Tanzania

    Ribosomal RNA Gene Restriction Patterns Provide Increased Sensitivity for Typing Salmonella typhi Strains

    Full text link
    To date, epidemiologic associations among strains of Salmonella typhi are based exclusively on phage typing, which may be of limited value if a common phage type is involved. Analysis of ribosomal RNA gene restriction patterns allows separation of most independently isolated strains of identical phage types. The sensitivity of the method is dependent on the restriction enzymes used to digest chromosomal DNA. It was highest for PstI, which separated 16 of 20 strains that belonged to 8 phage types including 3 untypable strains. Three strains differed in their phage types but had identical ribosomal RNA gene restriction patterns. Also, two pairs of strains indistinguishable by phage typing exhibited identical patterns; however, two of these strains were expected to be identical because they were isolated from two patients who were likely exposed to the same source. Ribosomal RNA gene restriction patterns appear to be stable. Thus, the method may complement phage typing and aid in further differentiation of strain
    • …
    corecore