20,890 research outputs found
The Diffraction Model and its Applicability for Wakefield Calculations
The operation of a Free Electron Laser (FEL) in the ultraviolet or in the
X-ray regime requires the acceleration of electron bunches with an rms length
of 25 to 50 micro meters. The wakefields generated by these sub picosecond
bunches extend into the frequency range well beyond the threshold for Cooper
pair breakup (about 750 GHz) in superconducting niobium at 2 K. It is shown,
that the superconducting cavities can indeed be operated with 25 micro meter
bunches without suffering a breakdown of superconductivity (quench), however at
the price of a reduced quality factor and an increased heat transfer to the
superfluid helium bath. This was first shown by wakefield calculations based on
the diffraction model. In the meantime a more conventional method of computing
wake fields in the time domain by numerical methods was developed and used for
the wakefield calculations. Both methods lead to comparable results: the
operation of TESLA with 25 micro meter bunches is possible but leads to an
additional heat load due to the higher order modes (HOMs). Therefore HOM
dampers for these high frequencies are under construction. These dampers are
located in the beam pipes between the 9-cell cavities. So it is of interest, if
there are trapped modes in the cavity due to closed photon orbits. In this
paper we investigate the existence of trapped modes and the distribution of
heat load over the surface of the TESLA cavity by numerical photon tracking.Comment: Linac2000 conference paper ID No. MOE0
Quantum Tunneling and Phase Transitions in Spin Systems with an Applied Magnetic Field
Transitions from classical to quantum behaviour in a spin system with two
degenerate ground states separated by twin energy barriers which are asymmetric
due to an applied magnetic field are investigated. It is shown that these
transitions can be interpreted as first- or second-order phase transitions
depending on the anisotropy and magnetic parameters defining the system in an
effective Lagrangian description.Comment: 18 pages, 7 figure
Significance of zero modes in path--integral quantization of solitonic theories with BRST invariance
The significance of zero modes in the path-integral quantization of some
solitonic models is investigated. In particular a Skyrme-like theory with
topological vortices in (1+2) dimensions is studied, and with a BRST invariant
gauge fixing a well defined transition amplitude is obtained in the one loop
approximation. We also present an alternative method which does not necessitate
evoking the time-dependence in the functional integral, but is equivalent to
the original one in dealing with the quantization in the background of the
static classical solution of the non-linear field equations. The considerations
given here are particularly useful in - but also limited to - the one-loop
approximation.Comment: 16 pages, LaTe
XNect: Real-time Multi-person 3D Human Pose Estimation with a Single RGB Camera
We present a real-time approach for multi-person 3D motion capture at over 30 fps using a single RGB camera. It operates in generic scenes and is robust to difficult occlusions both by other people and objects. Our method operates in subsequent stages. The first stage is a convolutional neural network (CNN) that estimates 2D and 3D pose features along with identity assignments for all visible joints of all individuals. We contribute a new architecture for this CNN, called SelecSLS Net, that uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. In the second stage, a fully-connected neural network turns the possibly partial (on account of occlusion) 2D pose and 3D pose features for each subject into a complete 3D pose estimate per individual. The third stage applies space-time skeletal model fitting to the predicted 2D and 3D pose per subject to further reconcile the 2D and 3D pose, and enforce temporal coherence. Our method returns the full skeletal pose in joint angles for each subject. This is a further key distinction from previous work that neither extracted global body positions nor joint angle results of a coherent skeleton in real time for multi-person scenes. The proposed system runs on consumer hardware at a previously unseen speed of more than 30 fps given 512x320 images as input while achieving state-of-the-art accuracy, which we will demonstrate on a range of challenging real-world scenes
Intrinsic response time of graphene photodetectors
Graphene-based photodetectors are promising new devices for high-speed
optoelectronic applications. However, despite recent efforts, it is not clear
what determines the ultimate speed limit of these devices. Here, we present
measurements of the intrinsic response time of metal-graphene-metal
photodetectors with monolayer graphene using an optical correlation technique
with ultrashort laser pulses. We obtain a response time of 2.1 ps that is
mainly given by the short lifetime of the photogenerated carriers. This time
translates into a bandwidth of ~262 GHz. Moreover, we investigate the
dependence of the response time on gate voltage and illumination laser power
ExploreNEOs VIII: Dormant Short-Period Comets in the Near-Earth Asteroid Population
We perform a search for dormant comets, asteroidal objects of cometary
origin, in the near-Earth asteroid (NEA) population based on dynamical and
physical considerations. Our study is based on albedos derived within the
ExploreNEOs program and is extended by adding data from NEOWISE and the Akari
asteroid catalog. We use a statistical approach to identify asteroids on orbits
that resemble those of short-period near-Earth comets using the Tisserand
parameter with respect to Jupiter, the aphelion distance, and the minimum
orbital intersection distance with respect to Jupiter. From the sample of NEAs
on comet-like orbits, we select those with a geometric albedo
as dormant comet candidates, and find that only 50% of NEAs on comet-like
orbits also have comet-like albedos. We identify a total of 23 NEAs from our
sample that are likely to be dormant short-period near-Earth comets and, based
on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate
both magnitude-limited and size-limited fractions of the NEA population that
are dormant short-period comets. We find that 0.3-3.3% of the NEA population
with , and % of the population with diameters km, are dormant short-period near-Earth comets.Comment: 23 pages, 2 figures, 2 tables; accepted for publication in A
[The Impact of Nuclear Star Formation on Gas Inflow to AGN
Our adaptive optics observations of nearby AGN at spatial resolutions as
small as 0.085arcsec show strong evidence for recent, but no longer active,
nuclear star formation. We begin by describing observations that highlight two
contrasting methods by which gas can flow into the central tens of parsecs. Gas
accumulation in this region will inevitably lead to a starburst, and we discuss
the evidence for such events. We then turn to the impact of stellar evolution
on the further inflow of gas by combining a phenomenological approach with
analytical modelling and hydrodynamic simulations. These complementary
perspectives paint a picture in which all the processes are ultimately
regulated by the mass accretion rate into the central hundred parsecs, and the
ensuing starburst that occurs there. The resulting supernovae delay accretion
by generating a starburst wind, which leaves behind a clumpy interstellar
medium. This provides an ideal environment for slower stellar outflows to
accrete inwards and form a dense turbulent disk on scales of a few parsecs.
Such a scenario may resolve the discrepancy between the larger scale structure
seen with adaptive optics and the small scale structure seen with VLTI.Comment: to appear in: Co-Evolution of Central Black Holes and Galaxies; 7
page
Evidence for virtual Compton scattering from the proton
In virtual Compton scattering an electron is scattered off a nucleon such that the nucleon emits a photon. We show that these events can be selected experimentally, and present the first evidence for virtual Compton scattering from the proton in data obtained at the Stanford Linear Accelerator Center. The angular and energy dependence of the data is well described by a calculation that includes the coherent sum of electron and proton radiation
Recommended from our members
Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics
An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or âPEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 ÎŒl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified MichaelisâMenten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the âPEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols
- âŠ