10,320 research outputs found
Substructure and halo density profiles in a Warm Dark Matter Cosmology
We performed a series of high-resolution simulations designed to study the
substructure of Milky Way-size galactic halos (host halos) and the density
profiles of halos in a warm dark matter (WDM) scenario with a non-vanishing
cosmological constant. The virial masses of the host halos range from 3.5 x
10^12 to 1.7 x 10^12 solar masses and they have more than 10^5 particles each.
A key feature of the WDM power spectrum is the free-streaming length R_f which
fixes an additional parameter for the model of structure formation. We analyze
the substructure of host halos using three R_f values: 0.2, 0.1, and 0.05 Mpc
and compare results to the predictions of the cold dark matter (CDM) model. We
find that guest halos (satellites) do form in the WDM scenario but are more
easily destroyed by dynamical friction and tidal disruption than their
counterparts in a CDM model. The small number of guest halos that we find
within the virial radii of host halos at z = 0 in the WDM models is the result
of a less efficient halo accretion and a higher satellite destruction rate.
Under the assumption that each guest halo hosts a luminous galaxy, we find that
the observed circular velocity function of satellites around the Milky Way and
Andromeda is well described by the R_f = 0.1 Mpc WDM model. In the R_f =
0.1-0.2 Mpc models, the surviving subhalos at z=0 have an average concentration
parameter c_1/5 which is approximately twice smaller than that of the
corresponding CDM subhalos. This difference, very likely, produces the higher
satellite destruction rate found in the WDM models. The density profile of host
halos is well described by the NFW fit whereas guest halos show a wide variety
of density profiles (abridged).Comment: Uses emulateapj.sty: 10 pages, 4 figures, ApJ accepted. Some changes
have been introduced as suggested by the referee: (1) the description of the
numerical simulations was sligthly modified to make it clearer, (2) the
ellipticities of the host halos are now measured, and (3) the discussion
section was divided in two subsections and enlarge
Pinteiros cobertos - estufas para a redução da síndrome ascítica em frangos de corte.
bitstream/item/58545/1/CUsersPiazzonDocuments216.pd
Complex maps without invariant densities
We consider complex polynomials for and
, and find some combinatorial types and values of such that
there is no invariant probability measure equivalent to conformal measure on
the Julia set. This holds for particular Fibonacci-like and Feigenbaum
combinatorial types when sufficiently large and also for a class of
`long-branched' maps of any critical order.Comment: Typos corrected, minor changes, principally to Section
Magnetic structure and magnetoelastic coupling of GdNiSi3 and TbNiSi3
FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORThe series of intermetallic compounds RNiSi3 (R = rare earth) shows interesting magnetic properties evolving with R and metamagnetic transitions under applied magnetic field for some of the compounds. The microscopic magnetic structures must be determined to rationalize such rich behavior. Here, resonant x-ray magnetic diffraction experiments are performed on single crystals of GdNiSi3 and TbNiSi3 at zero field. The primitive magnetic unit cell matches the chemical cell below the Neel temperatures T-N = 22.2 and 33.2 K, respectively. The magnetic structure is determined to be the same for both compounds (magnetic space group Cmmm'). It features ferromagnetic ac planes that are stacked in an antiferromagnetic + - + - pattern, with the rare-earth magnetic moments pointing along the (a) over arrow direction, which contrasts with the + - - + stacking and moment direction along the (b) over arrow axis previously reported for YbNiSi3. This indicates a sign reversal of the coupling constant between second-neighbor R planes as R is varied from Gd and Tb to Yb. The long b lattice parameter of GdNiSi3 and TbNiSi3 shows a magnetoelastic expansion upon cooling below T-N, pointing to the conclusion that the + - + - stacking is stabilized under lattice expansion. A competition between distinct magnetic stacking patterns with similar exchange energies tuned by the size of R sets the stage for the magnetic ground state instability observed along this series.99916FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR2011/19924-22014/20365-62017/04913-1Sem informaçã
Turbulent dissipation in the ISM: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution
We discuss the dissipation of turbulent kinetic energy Ek in the global ISM
by means of 2-D, MHD, non-isothermal simulations in the presence of model
radiative heating and cooling. We argue that dissipation in 2D is
representative of that in three dimensions as long as it is dominated by shocks
rather than by a turbulent cascade. Energy is injected at a few isolated sites
in space, over relatively small scales, and over short time periods. This leads
to the coexistence of forced and decaying regimes in the same flow. We find
that the ISM-like flow dissipates its turbulent energy rapidly. In simulations
with forcing, the input parameters are the radius l_f of the forcing region,
the total kinetic energy e_k each source deposits into the flow, and the rate
of formation of those regions, sfr_OB. The global dissipation time t_d depends
mainly on l_f. In terms of measurable properties of the ISM, t_d >= Sigma_g
u_rms^2/(e_k sfr_OB), where Sigma_g is the average gas surface density and
u_rms is the rms velocity dispersion. For the solar neighborhood, t_d >=
1.5x10^7 yr. The global dissipation time is consistently smaller than the
crossing time of the largest energy-containing scales. In decaying simulations,
Ek decreases with time as t^-n, where n~0.8-0.9. This suggests a decay with
distance d as Ek\propto d^{-2n/(2-n)} in the mixed forced+decaying case. If
applicable to the vertical direction, our results support models of galaxy
evolution in which stellar energy injection provides significant support for
the gas disk thickness, but not models of galaxy formation in which this energy
injection is supposed to reheat an intra-halo medium at distances of up to
10-20 times the optical galaxy size, as the dissipation occurs on distances
comparable to the disk height.Comment: 23 pages, including figures. To appear in ApJ. Abstract abridge
Generic Continuous Spectrum for Ergodic Schr"odinger Operators
We consider discrete Schr"odinger operators on the line with potentials
generated by a minimal homeomorphism on a compact metric space and a continuous
sampling function. We introduce the concepts of topological and metric
repetition property. Assuming that the underlying dynamical system satisfies
one of these repetition properties, we show using Gordon's Lemma that for a
generic continuous sampling function, the associated Schr"odinger operators
have no eigenvalues in a topological or metric sense, respectively. We present
a number of applications, particularly to shifts and skew-shifts on the torus.Comment: 14 page
Interactions between vaccinia virus and sensitized macrophages in vitro
The action of peritoneal exudate cells (PEC) from normal and vaccinia virus infected mice on infectious vaccinia virus particles was investigatedin vitro. PEC from immune mice showed a significantly higher infectivity titre reduction (virus clearance, VC) than normal cells. This effect could be clearly attributed to the macrophage. Vaccinia virus multiplied in PEC from normal animals while there was no virus propagation in cells from immunized mice. The release of adsorbed or engulfed virus was reduced significantly in PEC from immunized animals. Anti-vaccinia-antibodies seem to activate normal macrophages to increased virus clearance. This stimulating effect was demonstrable only in the IgG fraction of the antiserum.
The activity of macrophages from mice injected three times over a period of 14 days with vaccinia virus could be entirely blocked with anti-mouse-IgG, while PEC from mice injected one time six days previously were not inhibited
A Robot Model of OC-Spectrum Disorders : Design Framework, Implementation and First Experiments
© 2019 Massachusetts Institute of TechnologyComputational psychiatry is increasingly establishing itself as valuable discipline for understanding human mental disorders. However, robot models and their potential for investigating embodied and contextual aspects of mental health have been, to date, largely unexplored. In this paper, we present an initial robot model of obsessive-compulsive (OC) spectrum disorders based on an embodied motivation-based control architecture for decision making in autonomous robots. The OC family of conditions is chiefly characterized by obsessions (recurrent, invasive thoughts) and/or compulsions (an urge to carry out certain repetitive or ritualized behaviors). The design of our robot model follows and illustrates a general design framework that we have proposed to ground research in robot models of mental disorders, and to link it with existing methodologies in psychiatry, and notably in the design of animal models. To test and validate our model, we present and discuss initial experiments, results and quantitative and qualitative analysis regarding the compulsive and obsessive elements of OC-spectrum disorders. While this initial stage of development only models basic elements of such disorders, our results already shed light on aspects of the underlying theoretical model that are not obvious simply from consideration of the model.Peer reviewe
Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method
Quantum information protocols utilizing atomic ensembles require preparation
of a coherent spin state (CSS) of the ensemble as an important starting point.
We investigate the magneto-optical resonance method for characterizing a spin
state of cesium atoms in a paraffin coated vapor cell. Atoms in a constant
magnetic field are subject to an off-resonant laser beam and an RF magnetic
field. The spectrum of the Zeeman sub-levels, in particular the weak quadratic
Zeeman effect, enables us to measure the spin orientation, the number of atoms,
and the transverse spin coherence time. Notably the use of 894nm pumping light
on the D1-line, ensuring the state F=4, m_F=4 to be a dark state, helps us to
achieve spin orientation of better than 98%. Hence we can establish a CSS with
high accuracy which is critical for the analysis of the entangled states of
atoms.Comment: 12 pages ReVTeX, 6 figures, in v2 added ref. and corrected typo
- …