10,320 research outputs found

    Substructure and halo density profiles in a Warm Dark Matter Cosmology

    Get PDF
    We performed a series of high-resolution simulations designed to study the substructure of Milky Way-size galactic halos (host halos) and the density profiles of halos in a warm dark matter (WDM) scenario with a non-vanishing cosmological constant. The virial masses of the host halos range from 3.5 x 10^12 to 1.7 x 10^12 solar masses and they have more than 10^5 particles each. A key feature of the WDM power spectrum is the free-streaming length R_f which fixes an additional parameter for the model of structure formation. We analyze the substructure of host halos using three R_f values: 0.2, 0.1, and 0.05 Mpc and compare results to the predictions of the cold dark matter (CDM) model. We find that guest halos (satellites) do form in the WDM scenario but are more easily destroyed by dynamical friction and tidal disruption than their counterparts in a CDM model. The small number of guest halos that we find within the virial radii of host halos at z = 0 in the WDM models is the result of a less efficient halo accretion and a higher satellite destruction rate. Under the assumption that each guest halo hosts a luminous galaxy, we find that the observed circular velocity function of satellites around the Milky Way and Andromeda is well described by the R_f = 0.1 Mpc WDM model. In the R_f = 0.1-0.2 Mpc models, the surviving subhalos at z=0 have an average concentration parameter c_1/5 which is approximately twice smaller than that of the corresponding CDM subhalos. This difference, very likely, produces the higher satellite destruction rate found in the WDM models. The density profile of host halos is well described by the NFW fit whereas guest halos show a wide variety of density profiles (abridged).Comment: Uses emulateapj.sty: 10 pages, 4 figures, ApJ accepted. Some changes have been introduced as suggested by the referee: (1) the description of the numerical simulations was sligthly modified to make it clearer, (2) the ellipticities of the host halos are now measured, and (3) the discussion section was divided in two subsections and enlarge

    Pinteiros cobertos - estufas para a redução da síndrome ascítica em frangos de corte.

    Get PDF
    bitstream/item/58545/1/CUsersPiazzonDocuments216.pd

    Complex maps without invariant densities

    Get PDF
    We consider complex polynomials f(z)=z+c1f(z) = z^\ell+c_1 for 2N\ell \in 2\N and c1Rc_1 \in \R, and find some combinatorial types and values of \ell such that there is no invariant probability measure equivalent to conformal measure on the Julia set. This holds for particular Fibonacci-like and Feigenbaum combinatorial types when \ell sufficiently large and also for a class of `long-branched' maps of any critical order.Comment: Typos corrected, minor changes, principally to Section

    Magnetic structure and magnetoelastic coupling of GdNiSi3 and TbNiSi3

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORThe series of intermetallic compounds RNiSi3 (R = rare earth) shows interesting magnetic properties evolving with R and metamagnetic transitions under applied magnetic field for some of the compounds. The microscopic magnetic structures must be determined to rationalize such rich behavior. Here, resonant x-ray magnetic diffraction experiments are performed on single crystals of GdNiSi3 and TbNiSi3 at zero field. The primitive magnetic unit cell matches the chemical cell below the Neel temperatures T-N = 22.2 and 33.2 K, respectively. The magnetic structure is determined to be the same for both compounds (magnetic space group Cmmm'). It features ferromagnetic ac planes that are stacked in an antiferromagnetic + - + - pattern, with the rare-earth magnetic moments pointing along the (a) over arrow direction, which contrasts with the + - - + stacking and moment direction along the (b) over arrow axis previously reported for YbNiSi3. This indicates a sign reversal of the coupling constant between second-neighbor R planes as R is varied from Gd and Tb to Yb. The long b lattice parameter of GdNiSi3 and TbNiSi3 shows a magnetoelastic expansion upon cooling below T-N, pointing to the conclusion that the + - + - stacking is stabilized under lattice expansion. A competition between distinct magnetic stacking patterns with similar exchange energies tuned by the size of R sets the stage for the magnetic ground state instability observed along this series.99916FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR2011/19924-22014/20365-62017/04913-1Sem informaçã

    Turbulent dissipation in the ISM: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution

    Get PDF
    We discuss the dissipation of turbulent kinetic energy Ek in the global ISM by means of 2-D, MHD, non-isothermal simulations in the presence of model radiative heating and cooling. We argue that dissipation in 2D is representative of that in three dimensions as long as it is dominated by shocks rather than by a turbulent cascade. Energy is injected at a few isolated sites in space, over relatively small scales, and over short time periods. This leads to the coexistence of forced and decaying regimes in the same flow. We find that the ISM-like flow dissipates its turbulent energy rapidly. In simulations with forcing, the input parameters are the radius l_f of the forcing region, the total kinetic energy e_k each source deposits into the flow, and the rate of formation of those regions, sfr_OB. The global dissipation time t_d depends mainly on l_f. In terms of measurable properties of the ISM, t_d >= Sigma_g u_rms^2/(e_k sfr_OB), where Sigma_g is the average gas surface density and u_rms is the rms velocity dispersion. For the solar neighborhood, t_d >= 1.5x10^7 yr. The global dissipation time is consistently smaller than the crossing time of the largest energy-containing scales. In decaying simulations, Ek decreases with time as t^-n, where n~0.8-0.9. This suggests a decay with distance d as Ek\propto d^{-2n/(2-n)} in the mixed forced+decaying case. If applicable to the vertical direction, our results support models of galaxy evolution in which stellar energy injection provides significant support for the gas disk thickness, but not models of galaxy formation in which this energy injection is supposed to reheat an intra-halo medium at distances of up to 10-20 times the optical galaxy size, as the dissipation occurs on distances comparable to the disk height.Comment: 23 pages, including figures. To appear in ApJ. Abstract abridge

    Generic Continuous Spectrum for Ergodic Schr"odinger Operators

    Full text link
    We consider discrete Schr"odinger operators on the line with potentials generated by a minimal homeomorphism on a compact metric space and a continuous sampling function. We introduce the concepts of topological and metric repetition property. Assuming that the underlying dynamical system satisfies one of these repetition properties, we show using Gordon's Lemma that for a generic continuous sampling function, the associated Schr"odinger operators have no eigenvalues in a topological or metric sense, respectively. We present a number of applications, particularly to shifts and skew-shifts on the torus.Comment: 14 page

    Interactions between vaccinia virus and sensitized macrophages in vitro

    Get PDF
    The action of peritoneal exudate cells (PEC) from normal and vaccinia virus infected mice on infectious vaccinia virus particles was investigatedin vitro. PEC from immune mice showed a significantly higher infectivity titre reduction (virus clearance, VC) than normal cells. This effect could be clearly attributed to the macrophage. Vaccinia virus multiplied in PEC from normal animals while there was no virus propagation in cells from immunized mice. The release of adsorbed or engulfed virus was reduced significantly in PEC from immunized animals. Anti-vaccinia-antibodies seem to activate normal macrophages to increased virus clearance. This stimulating effect was demonstrable only in the IgG fraction of the antiserum. The activity of macrophages from mice injected three times over a period of 14 days with vaccinia virus could be entirely blocked with anti-mouse-IgG, while PEC from mice injected one time six days previously were not inhibited

    A Robot Model of OC-Spectrum Disorders : Design Framework, Implementation and First Experiments

    Get PDF
    © 2019 Massachusetts Institute of TechnologyComputational psychiatry is increasingly establishing itself as valuable discipline for understanding human mental disorders. However, robot models and their potential for investigating embodied and contextual aspects of mental health have been, to date, largely unexplored. In this paper, we present an initial robot model of obsessive-compulsive (OC) spectrum disorders based on an embodied motivation-based control architecture for decision making in autonomous robots. The OC family of conditions is chiefly characterized by obsessions (recurrent, invasive thoughts) and/or compulsions (an urge to carry out certain repetitive or ritualized behaviors). The design of our robot model follows and illustrates a general design framework that we have proposed to ground research in robot models of mental disorders, and to link it with existing methodologies in psychiatry, and notably in the design of animal models. To test and validate our model, we present and discuss initial experiments, results and quantitative and qualitative analysis regarding the compulsive and obsessive elements of OC-spectrum disorders. While this initial stage of development only models basic elements of such disorders, our results already shed light on aspects of the underlying theoretical model that are not obvious simply from consideration of the model.Peer reviewe

    Characterizing the spin state of an atomic ensemble using the magneto-optical resonance method

    Full text link
    Quantum information protocols utilizing atomic ensembles require preparation of a coherent spin state (CSS) of the ensemble as an important starting point. We investigate the magneto-optical resonance method for characterizing a spin state of cesium atoms in a paraffin coated vapor cell. Atoms in a constant magnetic field are subject to an off-resonant laser beam and an RF magnetic field. The spectrum of the Zeeman sub-levels, in particular the weak quadratic Zeeman effect, enables us to measure the spin orientation, the number of atoms, and the transverse spin coherence time. Notably the use of 894nm pumping light on the D1-line, ensuring the state F=4, m_F=4 to be a dark state, helps us to achieve spin orientation of better than 98%. Hence we can establish a CSS with high accuracy which is critical for the analysis of the entangled states of atoms.Comment: 12 pages ReVTeX, 6 figures, in v2 added ref. and corrected typo
    corecore