29 research outputs found

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses.

    No full text
    Inhibitors of the protease of HIV-1 have been used successfully for the treatment of HIV-1-infected patients and AIDS disease. We tested whether these protease inhibitory drugs exerted effects in addition to their antiviral activity. Here, we show in mice infected with lymphocytic choriomeningitis virus and treated with the HIV-1 protease inhibitor ritonavir a marked inhibition of antiviral cytotoxic T lymphocyte (CTL) activity and impaired major histocompatibility complex class I-restricted epitope presentation in the absence of direct effects on lymphocytic choriomeningitis virus replication. A potential molecular target was found: ritonavir selectively inhibited the chymotrypsin-like activity of the 20S proteasome. In view of the possible role of T cell-mediated immunopathology in AIDS pathogenesis, the two mechanisms of action (i.e., reduction of HIV replication and impairment of CTL responses) may complement each other beneficially. Thus, the surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions

    Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues.

    No full text
    The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A(27-35) (AAGIGILTV) and the Melan-A(26-35) (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. In this study we introduced single amino acid substitutions in either one of the two natural peptide sequences with the aim of improving peptide binding to HLA-A*0201 and/or recognition by specific CTL. Surprisingly, analogues of the Melan-A(27-35) peptide, which bound more efficiently than the natural nonapeptide to HLA-A*0201, were poorly recognized by tumor-reactive CTL. In contrast, among the Melan-A(26-35) peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials

    A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene.

    No full text
    A cytolytic T lymphocyte (CTL) clone that lyses many HLA-A2 melanomas was derived from a population of tumor-infiltrating lymphocytes of an HLA-A2 melanoma patient. The gene coding for the antigen recognized by this CTL was identified by transfection of a cDNA library. It is the gene which has been reported to code for N-acetylglucosaminyltransferase V (GnT-V). Remarkably, the antigenic peptide recognized by the CTL is encoded by a sequence located in an intron. In contrast to the fully spliced GnT-V mRNA, which was found in a wide range of normal and tumoral tissues, the mRNA containing the intron region coding for the antigen was not found at a significant level in normal tissues. This mRNA was observed to be present in about 50% of melanomas. Our results suggest that a promoter located near the end of the relevant intron is activated in melanoma cells, resulting in the production of an mRNA coding for the antigen

    Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues.

    Get PDF
    Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo

    Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201-restricted Melan-A/MART-1 antigenic peptide in melanoma

    No full text
    The Melan-A/MART-1 gene product is frequently recognized by tumor-specific HLA-A2-restricted CTL. An immunodominant nonapeptide has been localized to the region spanning residues 27-35. However, the decapeptide including residues 26-35 (the nonapeptide extended NH2 terminally by one residue) appeared to be recognized as efficiently as the nonapeptide. In this study, we show that the optimal length immunodominant peptide appears to correspond to the decapeptide 26-35, as assessed by quantitative analyses of both 4 polyclonal and 13 monoclonal populations of specific CTL. Functional assays of peptide binding to HLA-A2 indicate that the decapeptide is significantly a more efficient binder than the nonapeptide. Moreover, analogues of the decapeptide including substitutions at a secondary HLA-A2 peptide anchor further improve decapeptide binding. Finally, we show that the functional (9 CTL clones analyzed) and structural TCR repertoire (7 CTL clones) of a group of specific CTL clones is rather diverse. The findings reported here may have important implications for future peptide-based melanoma vaccination trials as well as for the monitoring of specific CTL responses in vivo

    Prevalent role of TCR alpha-chain in the selection of the preimmune repertoire specific for a human tumor-associated self-antigen.

    No full text
    The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR
    corecore