51 research outputs found

    Alternating groups and moduli space lifting Invariants

    Full text link
    Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves Fried-Serre on deciding when sphere covers with odd-order branching lift to unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp. odd) theta functions when r is even (resp. odd). For inner spaces the result is independent of r. Another use appears in, http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for the prime p=2 lying over Hurwitz spaces first studied by, http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*) High tower levels are general-type varieties and have no rational points.For infinitely many of those MTs, the tree of cusps contains a subtree -- a spire -- isomorphic to the tree of cusps on a modular curve tower. This makes plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs. Establishing these modular curve-like properties opens, to MTs, modular curve-like thinking where modular curves have never gone before. A fuller html description of this paper is at http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from proof sheets, but does include some proof simplification in \S

    Prediction of Anisotropic Single-Dirac-Cones in Bi1x{}_{1-x}Sbx{}_{x} Thin Films

    Full text link
    The electronic band structures of Bi1x{}_{1-x}Sbx{}_{x} thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi1x{}_{1-x}Sbx{}_{x} thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band-gap, which can be used in a general two-dimensional system that has a non-parabolic dispersion relation as in a Bi1x{}_{1-x}Sbx{}_{x} thin film system

    Curves with infinite K-rational geometric fundamental group

    No full text
    this paper we shall use either quartic coverings of the projective line or quadratic coverings of elliptic curves with enough ramification points (instead of quadratic coverings of the projective line as in the class field tower constructions) to find for every genus g 3 curves with infinite geometric fundamental group defined over Q(i) or over F q (i) (where i is a forth root of unity) and we find even parametric families of such curves over every ground field containing i (cf. Theorem 5.22)
    corecore