31 research outputs found

    Higher-Derivative Boson Field Theories and Constrained Second-Order Theories

    Get PDF
    As an alternative to the covariant Ostrogradski method, we show that higher-derivative relativistic Lagrangian field theories can be reduced to second differential-order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac's procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the grounds of a simple scalar model and then its applications to generalized electrodynamics and higher-derivative gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theoriesComment: 31 pages, Plain Te

    Tensor Perturbations in Quantum Cosmological Backgrounds

    Full text link
    In the description of the dynamics of tensor perturbations on a homogeneous and isotropic background cosmological model, it is well known that a simple Hamiltonian can be obtained if one assumes that the background metric satisfies Einstein classical field equations. This makes it possible to analyze the quantum evolution of the perturbations since their dynamics depends only on this classical background. In this paper, we show that this simple Hamiltonian can also be obtained from the Einstein-Hilbert lagrangian without making use of any assumption about the dynamics of the background metric. In particular, it can be used in situations where the background metric is also quantized, hence providing a substantial simplification over the direct approach originally developed by Halliwell and Hawking.Comment: 24 pages, JHEP forma

    Higher derivative theories with constraints : Exorcising Ostrogradski's Ghost

    Full text link
    We prove that the linear instability in a non-degenerate higher derivative theory, the Ostrogradski instability, can only be removed by the addition of constraints if the original theory's phase space is reduced.Comment: 17 pages, no figures, version published in JCA

    Gauge Fixing in Higher Derivative Gravity

    Get PDF
    Linearized four-derivative gravity with a general gauge fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts, and the intriguing "third ghosts", characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities.Comment: 21 pages, LaTe

    Ostrogradski Formalism for Higher-Derivative Scalar Field Theories

    Get PDF
    We carry out the extension of the Ostrogradski method to relativistic field theories. Higher-derivative Lagrangians reduce to second differential-order with one explicit independent field for each degree of freedom. We consider a higher-derivative relativistic theory of a scalar field and validate a powerful order-reducing covariant procedure by a rigorous phase-space analysis. The physical and ghost fields appear explicitly. Our results strongly support the formal covariant methods used in higher-derivative gravity.Comment: 22 page
    corecore