223 research outputs found

    Two-pion exchange potential and the πN\pi N amplitude

    Get PDF
    We discuss the two-pion exchange potential which emerges from a box diagram with one nucleon (the spectator) restricted to its mass shell, and the other nucleon line replaced by a subtracted, covariant πN\pi N scattering amplitude which includes Δ\Delta, Roper, and D13D_{13} isobars, as well as contact terms and off-shell (non-pole) dressed nucleon terms. The πN\pi N amplitude satisfies chiral symmetry constraints and fits πN\pi N data below \sim 700 MeV pion energy. We find that this TPE potential can be well approximated by the exchange of an effective sigma and delta meson, with parameters close to the ones used in one-boson-exchange models that fit NNNN data below the pion production threshold.Comment: 9 pages (RevTex) and 7 postscript figures, in one uuencoded gzipped tar fil

    Graph-Theoretic Confirmation of Restructuring During Insight

    Get PDF
    The “flash of insight” sometimes observed in problem solving and in scientific discovery has been thought to be due to a sudden cognitive restructuring of the problem situation Direct confirmation of restructuring has been difficult without an independent procedure for determining cognitive structure Graph structures were derived from judgments of concept relatedness made by subjects who had an insight and by several groups who either did not or could not have the insight The graphs of the solvers differed from the graphs of subjects who tried and failed, those who listened to the solvers, and those who were given the solution When other subjects in a subsequent experiment repeatedly judged similarity of pairs of concepts, there was evidence that those connections critical to the new cognitive order were targeted long before there was the breathtaking cognitive reorganizationYeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Medium Modification of The Pion-Pion Interaction at Finite Density

    Get PDF
    We discuss medium modifications of the unitarized pion-pion interaction in the nuclear medium. We incorporate both the effects of chiral symmetry restoration and the influence of collective nuclear pionic modes originating from the p-wave coupling of the pion to delta-hole configurations. We show in particular that the dropping of the sigma meson mass significantly enhances the low energy structure created by the in-medium collective pionic modes.Comment: 26 pages, 7 figures included, Latex fil

    Nuclear Saturation with in-Medium Meson Exchange Interactions

    Full text link
    We show that the assumption of dropping meson masses together with conventional many-body effects, implemented in the relativistic Dirac-Brueckner formalism, explains nuclear saturation. We use a microscopic model for correlated 2π2\pi exchange and include the standard many-body effects on the in-medium pion propagation, which initially increase the attractive nucleon-nucleon (NNNN) potential with density. For the vector meson exchanges in both the ππ\pi\pi and NNNN sector, we assume Brown-Rho scaling which---in concert with `chiral' ππ\pi\pi contact interactions---reduces the attraction at higher densities.Comment: 5 pages REVTeX, 2 eps-figures included, submitted to Phys. Rev. Let

    The twin paradox and Mach's principle

    Full text link
    The problem of absolute motion in the context of the twin paradox is discussed. It is shown that the various versions of the clock paradox feature some aspects which Mach might have been appreciated. However, the ultimate cause of the behavior of the clocks must be attributed to the autonomous status of spacetime, thereby proving the relational program advocated by Mach as impracticable.Comment: Latex2e, 11 pages, 6 figures, 33 references, no tables. Accepted for publication in The European Physical Journal PLUS (EPJ PLUS

    N N bar,Delta bar N, Delta N bar excitation for the pion propagator in nuclear matter

    Full text link
    The particle-hole and Delta -hole excitations are well-known elementary excitation modes for the pion propagator in nuclear matter. But, the excitation also involves antiparticles, namely, nucleon-antinucleon, anti-Delta-nucleon and Delta-antinucleon excitations. These are important for high-energy momentum as well, and have not been studied before, to our knowledge. In this paper, we give both the formulas and the numerical calculations for the real and the imaginary parts of these excitations.Comment: Latex, 3 eps file

    Pion-nucleon scattering in a meson-exchange model

    Get PDF
    The pi-N interaction is studied within a meson-exchange model and in a coupled-channels approach which includes the channels pi-N, eta-N, as well as three effective pi-pi-N channels namely rho-N, pi-Delta, and sigma-N. Starting out from an earlier model of the Julich group systematic improvements in the dynamics and in some technical aspects are introduced. With the new model an excellent quantitative reproduction of the pi-N phase shifts and inelasticity parameters in the energy region up to 1.9 GeV and for total angular momenta J leq 3/2 is achieved. Simultaneously, good agreement with data for the total and differential pi-N -> eta-N transition cross sections is obtained. The connection of the pi_N dynamics in the S_{11} partial wave with the reaction pi-N -> eta-N is discussed.Comment: 32 pages, 9 figure

    What is the structure of the Roper resonance?

    Get PDF
    We investigate the structure of the nucleon resonance N^*(1440) (Roper) within a coupled-channel meson exchange model for pion-nucleon scattering. The coupling to pipiN states is realized effectively by the coupling to the sigmaN, piDelta and rhoN channels. The interaction within and between these channels is derived from an effective Lagrangian based on a chirally symmetric Lagrangian, which is supplemented by well known terms for the coupling of the Delta isobar, the omega meson and the 'sigma', which is the name given here to the strong correlation of two pions in the scalar-isoscalar channel. In this model the Roper resonance can be described by meson-baryon dynamics alone; no genuine N^*(1440) (3 quark) resonance is needed in order to fit piN phase shifts and inelasticities.Comment: 55 pages, 14 figure

    Role of baryonic resonances in the dilepton emission in nucleon-nucleon collisions

    Get PDF
    Within an effective Lagrangian model, we present calculations for cross sections of the dilepton production in proton-proton and proton-neutron collisions at laboratory kinetic energies in 1-5 GeV range. Production amplitudes include contributions from the nucleon-nucleon bremsstrahlung as well as from the mechanism of excitation, propagation, and radiative decay of Delta(1232) and N*(1520) intermediate baryonic resonances. It is found that the delta isobar terms dominate the cross sections in the entire considered beam energy range. Our calculations are able to explain the data of the DLS collaboration on the dilepton production in proton-proton collisions for beam energies below 1.3 GeV. However, for incident energies higher than this the inclusion of contributions from other dilepton sources like Dalitz decay of pi0 and eta mesons, and direct decay of rho and omega mesons is necessary to describe the data.Comment: 22 pages, 7 figures, more details of the calculations added, version to appear in Phys. Rev

    Two-Loop Calculations with Vertex Corrections in the Walecka Model

    Full text link
    Two-loop corrections with scalar and vector form factors are calculated for nuclear matter in the Walecka model. The on-shell form factors are derived from vertex corrections within the framework of the model and are highly damped at large spacelike momenta. The two-loop corrections are evaluated first by using the one-loop parameters and mean fields and then by refitting the total energy/baryon to empirical nuclear matter saturation properties. The modified two-loop corrections are significantly smaller than those computed with bare vertices. Contributions from the anomalous isoscalar form factor of the nucleon are included for the first time. The effects of the implicit density dependence of the form factors, which arise from the shift in the baryon mass, are also considered. Finally, necessary extensions of these calculations are discussed.Comment: 29 pages in REVTeX, 18 figures, preprint IU/NTC 94-02 //OSU--94-11
    corecore