97 research outputs found

    Two-Centered Magical Charge Orbits

    Get PDF
    We determine the two-centered generic charge orbits of magical N = 2 and maximal N = 8 supergravity theories in four dimensions. These orbits are classified by seven U-duality invariant polynomials, which group together into four invariants under the horizontal symmetry group SL(2,R). These latter are expected to disentangle different physical properties of the two-centered black-hole system. The invariant with the lowest degree in charges is the symplectic product (Q1,Q2), known to control the mutual non-locality of the two centers.Comment: 1+17 pages, 1 Table; v2: Eq. (3.23) corrected; v3: various refinements in text and formulae, caption of Table 1 expanded, Footnote and Refs. added. To appear on JHE

    Monoterpene Variation Mediated Attack Preference Evolution of the Bark Beetle Dendroctonus valens

    Get PDF
    Several studies suggest that some bark beetle like to attack large trees. The invasive red turpentine beetle (RTB), Dendroctonus valens LeConte, one of the most destructive forest pests in China, is known to exhibit this behavior. Our previous study demonstrated that RTBs preferred to attack large-diameter trees (diameter at breast height, DBH ≥30 cm) over small-diameter trees (DBH ≤10 cm) in the field. In the current study, we studied the attacking behavior and the underlying mechanisms in the laboratory. Behavioral assays showed that RTBs preferred the bark of large-DBH trees and had a higher attack rate on the bolts of these trees. Y-tube assays showed that RTBs preferred the volatiles released by large-DBH trees to those released by small-DBH trees. Subsequent analysis revealed that both large- and small-DBH trees had the same composition of monoterpenes, but the concentration of each component differed; thus it appeared that the concentrations acted as cues for RTBs to locate the right-sized host which was confirmed by further behavioral assays. Moreover, large-DBH pine trees provided more spacious habitat and contained more nutrients, such as nitrogen, than did small-DBH pine trees, which benefited RTBs' fecundity and larval development. RTBs seem to have evolved mechanisms to locate those large hosts that will allow them to maximize their fitness. Monoterpene variation mediated attack preference implies the potential for the management of RTB

    Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat

    Get PDF
    The study examines oribatid communities and heavy metal bioaccumulation in selected species associated with different microhabitats of a post-smelting dump, i.e. three lichen species of Cladonia with various growth forms and the slag substrate. The abundance of oribatids collected from the substrate was significantly lower than observed in lichen thalli. The morphology and chemical properties of lichens, and to some extent varying concentrations of heavy metals in thalli, are probably responsible for significant differences in oribatid communities inhabiting different Cladonia species. Some oribatids demonstrate the ability to accumulate zinc and cadmium with unusual efficiency, whereas lead is the most effectively regulated element by all species. A positive correlation was found between Zn content in all studied oribatids and their microhabitats. Oribatids exploring different food resources, i.e. fungivorous and non-fungivorous grazers, show considerable differences in bioconcentrations of certain elements

    Nutritional indices in the gypsy moth ( Lymantria dispar (L.)) under field conditions and host switching situations

    Full text link
    A large proportion of gypsy moths ( Lymantria dispar (L.)) are likely to experience multiple species diets in the field due to natural wandering and host switching which occurs with these insects. Nutritional indices in fourth and fifth instar gypsy moth larvae were studied in the field for insects that were switched to a second host species when they were fourth instars. The tree species used as hosts were northern pin oak ( Quercus ellipsoidalis E. J. Hill), white oak ( Q. alba L.), big-tooth aspen ( Populus grandidentata Michx.), and trembling aspen ( P. tremuloides Michx.). Conclusions of this study include: 1) Insects which fed before the host switch on northern pin oak performed better after the host switch than did insects with other types of early dietary experience. While the northern pin oak-started insects had very low relative food consumption rates on their second host species immediately after the switch, one instar later they had the highest ranked consumption rates. During both instars they had the second highest efficiencies of converting ingested and digested food to body mass. High food consumption rates and relatively high efficiency of food conversion helped these insects to obtain the highest ranked mean relative growth rates in the fifth instar compared to the relative growth rates obtained by insects from any of the other first host species. 2) Among the four host species examined, a second host of trembling aspen was most advantageous for the insects. Feeding on this species after the switch led to higher larval weights and higher relative growth rates for insects than did any of the other second host species. The insects on trembling aspen attained excellent growth despite only mediocre to low food conversion efficiencies. The low efficiencies were offset by high relative food consumption rates. 3) Low food consumption rates often tend to be paired with high efficiency of conversion and vice versa. 4) There is no discernable tendency for the first plant species eaten to cause long-term inductions which affect the ability of gypsy moths to utilize subsequent host plants. Insects did not tend to consume more, grow faster, or be more efficient if their second host plant was either the same as their rearing plant or congeneric to it. Methods are delineated which allow values of nutritional indices to be obtained for insects on intact host plants under field conditions. These methods are useful for the purpose of answering questions about the relative effects that different diet treatments have on insect response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47803/1/442_2004_Article_BF00323145.pd
    corecore