33 research outputs found

    Are Metastases from Metastases Clinical Relevant? Computer Modelling of Cancer Spread in a Case of Hepatocellular Carcinoma

    Get PDF
    Background: Metastasis formation remains an enigmatic process and one of the main questions recently asked is whether metastases are able to generate further metastases. Different models have been proposed to answer this question; however, their clinical significance remains unclear. Therefore a computer model was developed that permits comparison of the different models quantitatively with clinical data and that additionally predicts the outcome of treatment interventions. Methods: The computer model is based on discrete events simulation approach. On the basis of a case from an untreated patient with hepatocellular carcinoma and its multiple metastases in the liver, it was evaluated whether metastases are able to metastasise and in particular if late disseminated tumour cells are still capable to form metastases. Additionally, the resection of the primary tumour was simulated. The simulation results were compared with clinical data. Results: The simulation results reveal that the number of metastases varies significantly between scenarios where metastases metastasise and scenarios where they do not. In contrast, the total tumour mass is nearly unaffected by the two different modes of metastasis formation. Furthermore, the results provide evidence that metastasis formation is an early event and that late disseminated tumour cells are still capable of forming metastases. Simulations also allow estimating how the resection of the primary tumour delays the patient’s death. Conclusion: The simulation results indicate that for this particular case of a hepatocellular carcinoma late metastases, i.e.

    The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors

    Get PDF
    Abstract Background Anti-cancer drugs access solid tumors via blood vessels, and must penetrate tumor tissue to reach all cancer cells. Previous studies have demonstrated steep gradients of decreasing doxorubicin fluorescence with increasing distance from blood vessels, such that many tumor cells are not exposed to drug. Studies using multilayered cell cultures show that increased P-glycoprotein (PgP) is associated with better penetration of doxorubicin, while PgP inhibitors decrease drug penetration in tumor tissue. Here we evaluate the effect of PgP expression on doxorubicin distribution in vivo. Methods Mice bearing tumor sublines with either high or low expression of PgP were treated with doxorubicin, with or without pre-treatment with the PgP inhibitors verapamil or PSC 833. The distribution of doxorubicin in relation to tumor blood vessels was quantified using immunofluorescence. Results Our results indicate greater uptake of doxorubicin by cells near blood vessels in wild type as compared to PgP-overexpressing tumors, and pre-treatment with verapamil or PSC 833 increased uptake in PgP-overexpressing tumors. However, there were steeper gradients of decreasing doxorubicin fluorescence in wild-type tumors compared to PgP overexpressing tumors, and treatment of PgP overexpressing tumors with PgP inhibitors led to steeper gradients and greater heterogeneity in the distribution of doxorubicin. Conclusion PgP inhibitors increase uptake of doxorubicin in cells close to blood vessels, have little effect on drug uptake into cells at intermediate distances, and might have a paradoxical effect to decrease doxorubicin uptake into distal cells. This effect probably contributes to the limited success of PgP inhibitors in clinical trials

    Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation

    Get PDF
    In this paper, we investigate the pharmacokinetics and effect of doxorubicin and cisplatin in vascularized tumors through two-dimensional simulations. We take into account especially vascular and morphological heterogeneity as well as cellular and lesion-level pharmacokinetic determinants like P-glycoprotein (Pgp) efflux and cell density. To do this we construct a multi-compartment PKPD model calibrated from published experimental data and simulate 2-h bolus administrations followed by 18-h drug washout. Our results show that lesion-scale drug and nutrient distribution may significantly impact therapeutic efficacy and should be considered as carefully as genetic determinants modulating, for example, the production of multidrug-resistance protein or topoisomerase II. We visualize and rigorously quantify distributions of nutrient, drug, and resulting cell inhibition. A main result is the existence of significant heterogeneity in all three, yielding poor inhibition in a large fraction of the lesion, and commensurately increased serum drug concentration necessary for an average 50% inhibition throughout the lesion (the IC50 concentration). For doxorubicin the effect of hypoxia and hypoglycemia (“nutrient effect”) is isolated and shown to further increase cell inhibition heterogeneity and double the IC50, both undesirable. We also show how the therapeutic effectiveness of doxorubicin penetration therapy depends upon other determinants affecting drug distribution, such as cellular efflux and density, offering some insight into the conditions under which otherwise promising therapies may fail and, more importantly, when they will succeed. Cisplatin is used as a contrast to doxorubicin since both published experimental data and our simulations indicate its lesion distribution is more uniform than that of doxorubicin. Because of this some of the complexity in predicting its therapeutic efficacy is mitigated. Using this advantage, we show results suggesting that in vitro monolayer assays using this drug may more accurately predict in vivo performance than for drugs like doxorubicin. The nonlinear interaction among various determinants representing cell and lesion phenotype as well as therapeutic strategies is a unifying theme of our results. Throughout it can be appreciated that macroscopic environmental conditions, notably drug and nutrient distributions, give rise to considerable variation in lesion response, hence clinical resistance. Moreover, the synergy or antagonism of combined therapeutic strategies depends heavily upon this environment

    MECHANISTIC INVESTIGATION OF LYSINE-TARGETED COVALENT INHIBITION OF PI3Kδ VIA ONIOM QM:QM COMPUTATIONS

    No full text
    International audiencePhosphoinositide 3-kinase (PI3K) enzymes are important drug targets, especially in oncology, and several inhibitors are currently under investigation in clinical trials for the treatment of lymphocytic leukemia, follicular lymphoma, breast, thyroid, colorectal and lung cancer. Targeted covalent inhibitors hold significant promise for drug discovery research especially for kinases. Targeting the lysine residues attracts attention as a new strategy in designing targeted covalent inhibitors since it provides several advantages over traditional cysteine residue. Recently, new highly selective covalent inhibitors of PI3Kδ with activated ester warheads, targeting the conserved Lys779 residue were reported. Based on the observed kinetics, a covalent inhibition mechanism was proposed but the atomistic details of the reaction are still not understood. Therefore, in the present work, we have conducted quantum chemical ONIOM M06-2X/6-31+G(d,p):PM6 calculations on the active site cluster structure of PI3Kδ to elucidate the microscopic details of the mechanism on aminolysis reaction between Lys779 and the ester inhibitors. Our calculations clearly discriminate the noncovalent methyl ester inhibitor and the covalent inhibitors with activated phenolic esters. For the representative p-NO 2 , p-F and p-OCH 3 phenolic esters, Gibbs free energy profiles of alternative mechanistic paths through either Asp782 or Asp911 demonstrate the modulatory role of active site aspartate residues. The most plausible path alters depending on the electron-withdrawing/donating nature of the p-substituted phenolate leaving group. Inhibitors with sufficiently strong electron-withdrawing group prefer direct dissociation of the leaving group from the tetrahedral zwitterion intermediate while the ones with electron-donating group favor the formation of a neutral tetrahedral intermediate prior to the dissociation. The relative Gibbs free energy barriers of p-NO 2 < p-F < p-OCH 3 substituted phenyl esters display the same qualitative trend as the experimentally measured k inact /K I values. Our results provide in depth insight into the mechanism, which can pave the way for optimizing the inhibitor efficiency
    corecore