7 research outputs found

    A theoretical study of possible point defects incorporated into alpha-alumina deposited by chemical vapor deposition

    No full text
    The energetics and electronic structure of carbon, chlorine, hydrogen, and sulfur in alpha-Al2O3 was investigated by first principles and thermodynamical calculations. These species are present in the gas phase during the synthesis of alpha-Al2O3 by chemical vapor deposition (CVD) but little is known of their solubility in this compound. The heat of formation from standard reference states of the elements varying the chemical potential of each element was calculated. An attempt to model the actual conditions in the CVD process was made, using the species and solid compounds present in a common CVD process as reference states. Our calculations suggest that sulfur from the catalyzing agent H2S will not solve in alpha-Al2O3 during deposition by CVD. It is found that the neutral chlorine and hydrogen interstitial defects display the lowest heat of formation, 281 and 280 kJ/mol, respectively, at the modeled CVD conditions. This energy is too high in order for neutral defects to form during CVD of alpha-Al2O3 at any significant amounts. The charged defects and their compensation were studied. Carbon substituting oxygen is found to be energetically favored under the modeled CVD conditions, considering carbon dioxide as competing species to solid solubility in alpha-Al2O3 at an energy of -128 kJ/mol. However, care needs to be taken when choosing the possible competing carbon-containing phases. Compensation of carbon substituting for oxygen by oxygen vacancies takes place at 110 kJ/mol from standard reference states, graphite, fcc-Al and O-2. The carbon solubility in Al2O3 is difficult to measure with standard analysis techniques such as X-ray diffraction and energy dispersive X-ray spectroscopy, but several stable compounds in the Al-C-O are available in the literature

    Tuning magnetic properties of In

    No full text
    The electronic structure and magnetic properties of In2O3 with four kinds of intrinsic point defects (O vacancy, In interstitial, O interstitial, and In vacancy) have been theoretically studied using the density functional theory. The defect energy states of the O vacancy and In interstitial are close to the bottom of conduction band and act as shallow donors, while the defect energy states of the In vacancy and O interstitial are just above the top of the valence band and act as shallow acceptors. Without addition of any magnetic ions, all the hole states are completely spin polarized, while the electron states display no spin polarization. This implies that semiconducting In2O3 can display magnetic ordering, purely due to the intrinsic defects. However, the formation energies for neutral p-type defects are too high to be thermodynamically stable at reasonable temperatures. Nevertheless, it is shown that negative charging can greatly decrease the formation energies of p-type defects, simultaneously removing the local magnetic moments. We conlcude that VIn''' and OI'' will be the dominant compensating defects as In2O3 is doped with TM ions, such as Sn, Mo, V and Cr. This result is consistent with the general view that the p-type defect is a key feature to mediate ferromagnetic coupling between transition metal ions of dilute concentration in metal oxides

    Break

    No full text
    The energetics and electronic structure of carbon, chlorine, hydrogen, and sulfur in alpha-Al2O3 was investigated by first principles and thermodynamical calculations. These species are present in the gas phase during the synthesis of alpha-Al2O3 by chemical vapor deposition (CVD) but little is known of their solubility in this compound. The heat of formation from standard reference states of the elements varying the chemical potential of each element was calculated. An attempt to model the actual conditions in the CVD process was made, using the species and solid compounds present in a common CVD process as reference states. Our calculations suggest that sulfur from the catalyzing agent H2S will not solve in alpha-Al2O3 during deposition by CVD. It is found that the neutral chlorine and hydrogen interstitial defects display the lowest heat of formation, 281 and 280 kJ/mol, respectively, at the modeled CVD conditions. This energy is too high in order for neutral defects to form during CVD of alpha-Al2O3 at any significant amounts. The charged defects and their compensation were studied. Carbon substituting oxygen is found to be energetically favored under the modeled CVD conditions, considering carbon dioxide as competing species to solid solubility in alpha-Al2O3 at an energy of -128 kJ/mol. However, care needs to be taken when choosing the possible competing carbon-containing phases. Compensation of carbon substituting for oxygen by oxygen vacancies takes place at 110 kJ/mol from standard reference states, graphite, fcc-Al and O-2. The carbon solubility in Al2O3 is difficult to measure with standard analysis techniques such as X-ray diffraction and energy dispersive X-ray spectroscopy, but several stable compounds in the Al-C-O are available in the literature
    corecore