102 research outputs found

    TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells

    Get PDF
    BACKGROUND: TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY), the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1), involved in cell cycle regulation and replication. METHODS: To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. RESULTS: Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G(2)/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G(2)/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. CONCLUSION: These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis

    TSPY is a cancer testis antigen expressed in human hepatocellular carcinoma

    Get PDF
    In search for genes associated with hepatocellular carcinoma (HCC) by cDNA microarray, we found that the transcription of TSPY, ‘testis-specific protein Y-encoded', was upregulated in HCC. Investigation of a broad spectrum of normal and malignant tissues by RT–PCR revealed the TSPY transcript selectively expressed in normal testis, different histological types of human neoplastic tissues, and tumour cell lines. The expression of TSPY in cancer cells was further confirmed by in situ hybridisation. Indirect immunofluorescence microscopy analysis showed that TSPY was localised mainly in the cytoplasm of transiently transfected cells. Testis-specific protein Y-encoded was detected in 50% (16 of 32) of well- and moderately differentiated HCC patients, in 16% (four of 25) of poorly differentiated HCC patients, and in 5% (one of 19) of renal cell cancer patients. A serological survey revealed that 6.6% (seven of 106) HCC patients had anti-TSPY antibody response, demonstrating the immunogenicity of TSPY in humans. In conclusion, these data suggest that TSPY is a novel cancer/testis (CT) antigen and may be a potential candidate in vaccine strategy for immunotherapy in HCC patients

    Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes

    Get PDF
    discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology

    TSPYL2 Is Important for G1 Checkpoint Maintenance upon DNA Damage

    Get PDF
    Nucleosome assembly proteins play important roles in chromatin remodeling, which determines gene expression, cell proliferation and terminal differentiation. Testis specific protein, Y-encoded-like 2 (TSPYL2) is a nucleosome assembly protein expressed in neuronal precursors and mature neurons. Previous studies have shown that TSPYL2 binds cyclin B and inhibits cell proliferation in cultured cells suggesting a role in cell cycle regulation. To investigate the physiological significance of TSPYL2 in the control of cell cycle, we generated mice with targeted disruption of Tspyl2. These mutant mice appear grossly normal, have normal life span and do not exhibit increased tumor incidence. To define the role of TSPYL2 in DNA repair, checkpoint arrest and apoptosis, primary embryonic fibroblasts and thymocytes from Tspyl2 deficient mice were isolated and examined under unperturbed and stressed conditions. We show that mutant fibroblasts are impaired in G1 arrest under the situation of DNA damage induced by gamma irradiation. This is mainly attributed to the defective activation of p21 transcription despite proper p53 protein accumulation, suggesting that TSPYL2 is additionally required for p21 induction. TSPYL2 serves a biological role in maintaining the G1 checkpoint under stress condition

    Nonphysiological overexpression of low-density lipoprotein receptors causes pathological intracellular lipid accumulation and the formation of cholesterol and cholesteryl ester crystals in vitro

    No full text
    Recent therapeutic strategies for the treatment of familial hypercholesterolemia have been based on liver-directed gene transfer of a functional low-density lipoprotein (LDL) receptor cDNA under control of viral or strong housekeeping promoters. Strong viral promoters including cytomegalovirus, Rous sarcoma virus, and simian virus 40 promoters are commonly employed to reach significant physiological effects. These promoters mediate constitutive and nonphysiological overexpression in every transduced cell, while the endogenous LDL receptor expression is controlled by a complex feedback mechanism based on intracellular cholesterol concentration. To investigate intracellular consequences of persistent LDL receptor overexpression we constructed a recombinant adenovirus encoding the human LDL receptor under control of the Rous sarcoma virus promoter. The metabolic and morphological effects of LDL receptor expression were characterized by uptake experiments with human hepatoma cells using fluorescent and radiolabeled LDL. We observed that large amounts of LDL accumulate within LDL receptor transduced cells, which eventually lead to massive intracellular lipid deposition. Kinetic experiments with LDL-supplemented medium resulted in numerous crystal shaped structures in the cytosol of transduced cells as visualized by digital interference contrast optic within 60 min after LDL supplementation. Thin layer chromatography analyses of cellular lipids suggested these crystalline structures to be dependent on intracellular cholesterol and cholesterol ester levels. Mock-infected cells showed neither cholesterol lipid accumulation nor crystal formation. In conclusion, our data demonstrate that nonphysiological overexpression of the LDL receptor can cause massive lipid accumulation, which cannot be compensated by the hepatoma cell metabolism. This phenomenon may result in negative selection of LDL receptor overexpressing cells in vitro and in vivo
    • …
    corecore