9,053 research outputs found

    Renormalization and Quantum Scaling of Frenkel-Kontorova Models

    Full text link
    We generalise the classical Transition by Breaking of Analyticity for the class of Frenkel-Kontorova models studied by Aubry and others to non-zero Planck's constant and temperature. This analysis is based on the study of a renormalization operator for the case of irrational mean spacing using Feynman's functional integral approach. We show how existing classical results extend to the quantum regime. In particular we extend MacKay's renormalization approach for the classical statistical mechanics to deduce scaling of low frequency effects and quantum effects. Our approach extends the phenomenon of hierarchical melting studied by Vallet, Schilling and Aubry to the quantum regime.Comment: 14 pages, 1 figure, submitted to J.Stat.Phy

    A Renormalization Group for Hamiltonians: Numerical Results

    Full text link
    We describe a renormalization group transformation that is related to the breakup of golden invariant tori in Hamiltonian systems with two degrees of freedom. This transformation applies to a large class of Hamiltonians, is conceptually simple, and allows for accurate numerical computations. In a numerical implementation, we find a nontrivial fixed point and determine the corresponding critical index and scaling. Our computed values for various universal constants are in good agreement with existing data for area-preserving maps. We also discuss the flow associated with the nontrivial fixed point.Comment: 11 Pages, 2 Figures. For future updates, check ftp://ftp.ma.utexas.edu/pub/papers/koch

    The SO(N) principal chiral field on a half-line

    Get PDF
    We investigate the integrability of the SO(N) principal chiral model on a half-line, and find that mixed Dirichlet/Neumann boundary conditions (as well as pure Dirichlet or Neumann) lead to infinitely many conserved charges classically in involution. We use an anomaly-counting method to show that at least one non-trivial example survives quantization, compare our results with the proposed reflection matrices, and, based on these, make some preliminary remarks about expected boundary bound-states.Comment: 7 pages, Late

    Stability of non-time-reversible phonobreathers

    Get PDF
    Non-time reversible phonobreathers are non-linear waves that can transport energy in coupled oscillator chains by means of a phase-torsion mechanism. In this paper, the stability properties of these structures have been considered. It has been performed an analytical study for low-coupling solutions based upon the so called {\em multibreather stability theorem} previously developed by some of the authors [Physica D {\bf 180} 235]. A numerical analysis confirms the analytical predictions and gives a detailed picture of the existence and stability properties for arbitrary frequency and coupling.Comment: J. Phys. A.:Math. and Theor. In Press (2010

    Universal diffusion near the golden chaos border

    Full text link
    We study local diffusion rate DD in Chirikov standard map near the critical golden curve. Numerical simulations confirm the predicted exponent α=5\alpha=5 for the power law decay of DD as approaching the golden curve via principal resonances with period qnq_n (D1/qnαD \sim 1/q^{\alpha}_n). The universal self-similar structure of diffusion between principal resonances is demonstrated and it is shown that resonances of other type play also an important role.Comment: 4 pages Latex, revtex, 3 uuencoded postscript figure

    The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: I. Basic Results

    Full text link
    The problem of finding the exact energies and configurations for the Frenkel-Kontorova model consisting of particles in one dimension connected to their nearest-neighbors by springs and placed in a periodic potential consisting of segments from parabolas of identical (positive) curvature but arbitrary height and spacing, is reduced to that of minimizing a certain convex function defined on a finite simplex.Comment: 12 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 6 Postscript figures, accepted by Phys. Rev.

    Effect of the Introduction of Impurities on the Stability Properties of Multibreathers at Low Coupling

    Get PDF
    sing a theorem dubbed the {\em Multibreather Stabiliy Theorem} [Physica D 180 (2003) 235-255] we have obtained the stability properties of multibreathers in systems of coupled oscillators with on-site potentials, with an inhomogeneity. Analytical results are obtained for 2-site, 3-site breathers, multibreathers, phonobreathers and dark breathers. The inhomogeneity is considered both at the on-site potential and at the coupling terms. All the results have been checked numerically with excellent agreement. The main conclusion is that the introduction of a impurity does not alter the stability properties.Comment: 20 pages, 9 figure

    Robust and Efficient Sifting-Less Quantum Key Distribution Protocols

    Full text link
    We show that replacing the usual sifting step of the standard quantum-key-distribution protocol BB84 by a one-way reverse reconciliation procedure increases its robustness against photon-number-splitting (PNS) attacks to the level of the SARG04 protocol while keeping the raw key-rate of BB84. This protocol, which uses the same state and detection than BB84, is the m=4 member of a protocol-family using m polarization states which we introduce here. We show that the robustness of these protocols against PNS attacks increases exponentially with m, and that the effective keyrate of optimized weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}

    Stationary and moving breathers in a simplified model of curved alpha--helix proteins

    Get PDF
    The existence, stability and movability of breathers in a model for alpha-helix proteins is studied. This model basically consists a chain of dipole moments parallel to it. The existence of localized linear modes brings about that the system has a characteristic frequency, which depends on the curvature of the chain. Hard breathers are stable, while soft ones experiment subharmonic instabilities that preserve, however the localization. Moving breathers can travel across the bending point for small curvature and are reflected when it is increased. No trapping of breathers takes place.Comment: 19 pages, 11 figure

    Information processing and signal integration in bacterial quorum sensing

    Get PDF
    Bacteria communicate using secreted chemical signaling molecules called autoinducers in a process known as quorum sensing. The quorum-sensing network of the marine bacterium {\it Vibrio harveyi} employs three autoinducers, each known to encode distinct ecological information. Yet how cells integrate and interpret the information contained within the three autoinducer signals remains a mystery. Here, we develop a new framework for analyzing signal integration based on Information Theory and use it to analyze quorum sensing in {\it V. harveyi}. We quantify how much the cells can learn about individual autoinducers and explain the experimentally observed input-output relation of the {\it V. harveyi} quorum-sensing circuit. Our results suggest that the need to limit interference between input signals places strong constraints on the architecture of bacterial signal-integration networks, and that bacteria likely have evolved active strategies for minimizing this interference. Here we analyze two such strategies: manipulation of autoinducer production and feedback on receptor number ratios.Comment: Supporting information is in appendi
    corecore