1,061 research outputs found

    Production of a Higgs pseudoscalar plus two jets in hadronic collisions

    Get PDF
    We consider the production of a Higgs pseudoscalar accompanied by two jets in hadronic collisions. We work in the limit that the top quark is much heavier than the Higgs pseudoscalar and use an effective Lagrangian for the interactions of gluons with the pseudoscalar. We compute the amplitudes involving: 1) four gluons and the pseudoscalar, 2) two quarks, two gluons and the pseudoscalar and 3) four quarks and the pseudoscalar. We find that the pseudoscalar amplitudes are nearly identical to those for the scalar case, the only differences being the overall size and the relative signs between terms. We present numerical cross sections for proton-proton collisions with center-of-mass energy 14 TeV.Comment: 12 pages, LaTeX, 4 Postscript figures, submitted to Phys. Rev.

    Exact Results on e+ e- --> e+ e- + 2 Photons at SLC/LEP Energies

    Full text link
    We use the spinor methods of the CALKUL collaboration, as realized by Xu, Zhang and Chang, to calculate the differential cross section for e+ e- --> e+ e- + 2 photons for c.m.s. energies in the SLC/LEP regime. An explicit complete formula for the respective cross section is obtained. The leading log approximation is used to check the formula. Applications of the formula to high precision luminosity calculations at SLC/LEP are discussed.Comment: 16 pages(LaTeX), UTHEP-92-0601 (contains corrected figures

    Generalized Gluon Currents and Applications in QCD

    Full text link
    We consider the process containing two quark lines and an arbitrary number of gluons in a spinor helicity framework. A current with two off-shell gluons appears in the amplitude. We first study this modified gluon current using recursion relations. The recursion relation for the modified gluon current is solved for the case of like-helicity gluons. We apply the modified gluon current to compute the amplitude for qqˉ→qqˉgg⋯gq \bar q \rightarrow q \bar q gg \cdots g in the like-helicity gluon case.Comment: 80 pages, 2 figures (appended in pictex), CLNS 91/112

    Multiphoton Production at High Energies in the Standard Model I

    Full text link
    We examine multiphoton production in the electroweak sector of the Standard Model in the high energy limit using the equivalence theorem in combination with spinor helicity techniques. We obtain recursion relations for currents consisting of a charged scalar, spinor, or vector line that radiates nn photons. Closed form solutions to these recursion relations for arbitrary nn are presented for the cases of like-helicity and one unlike-helicity photon production. We apply the currents singly and in pairs to obtain amplitudes for processes involving the production of nn photons with up to two unlike helicities from a pair of charged particles. The replacement of one or more photons by transversely polarized Z$-bosons is also discussed.Comment: 75 pages, CLNS 91/111

    Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles

    Get PDF
    The Weyl-van-der-Waerden spinor technique for calculating helicity amplitudes of massive and massless particles is presented in a form that is particularly well suited to a direct implementation in computer algebra. Moreover, we explain how to exploit discrete symmetries and how to avoid unphysical poles in amplitudes in practice. The efficiency of the formalism is demonstrated by giving explicit compact results for the helicity amplitudes of the processes gamma gamma -> f fbar, f fbar -> gamma gamma gamma, mu^- mu^+ -> f fbar gamma.Comment: 24 pages, late

    The Analysis of Multijet Events Produced at High Energy Hadron Colliders

    Get PDF
    We define and discuss a set of (4N - 4) parameters that can be used to analyse events in which N jets have been produced in high energy hadron-hadron collisions. These multijet variables are the multijet mass and (4N - 5) independent dimensionless parameters. To illustrate the use of the variables QCD predictions are presented for events with up to five jets produced at the Fermilab Tevatron Proton-Antiproton Collider. These QCD predictions are compared with the predictions of a model in which multijet events uniformly populate the N-body phase-space

    Standard Model Top Quark Asymmetry at the Fermilab Tevatron

    Full text link
    Top quark pair production at proton-antiproton colliders is known to exhibit a forward-backward asymmetry due to higher-order QCD effects. We explore how this asymmetry might be studied at the Fermilab Tevatron, including how the asymmetry depends on the kinematics of extra hard partons. We consider results for top quark pair events with one and two additional hard jets. We further note that a similar asymmetry, correlated with the presence of jets, arises in specific models for parton showers in Monte Carlo simulations. We conclude that the measurement of this asymmetry at the Tevatron will be challenging, but important both for our understanding of QCD and for our efforts to model it.Comment: 26 p., 10 embedded figs., comment added, version to appear in PR

    Amplitudes With Different Helicity Configurations Of Noncommutative QED

    Get PDF
    The amplitudes of purely photonic and photon{2-fermion processes of non- commutative QED (NCQED) are derived for different helicity configurations of photons. The basic ingredient is the NCQED counterpart of Yang-Mills recursion relations by means of Berends and Giele. The explicit solutions of recursion relations for NCQED photonic processes with special helicity configurations are presented.Comment: 23 pages, 2 figure

    Infrared behavior of graviton-graviton scattering

    Get PDF
    The quantum effective theory of general relativity, independent of the eventual full theory at high energy, expresses graviton-graviton scattering at one loop order O(E^4) with only one parameter, Newton's constant. Dunbar and Norridge have calculated the one loop amplitude using string based techniques. We complete the calculation by showing that the 1/(d-4) divergence which remains in their result comes from the infrared sector and that the cross section is finite and model independent when the usual bremsstrahlung diagrams are included.Comment: 12 pages, uses axodra

    Multiphoton Production at High Energies in the Standard Model II

    Full text link
    We examine multiphoton production in the electroweak sector of the Standard Model in the high energy limit using the equivalence theorem in combination with spinor helicity techniques. We utilize currents consisting of a charged scalar, spinor, or vector line that radiates nn photons. Only one end of the charged line is off shell in these currents, which are known for the cases of like-helicity and one unlike-helicity photons. We obtain a wide variety of helicity amplitudes for processes involving two pairs of charged particles by considering combinations of four currents. We examine the situation with respect to currents which have both ends of the charged line off-shell, and present solutions for the case of like-helicity photons. These new currents may be combined with two of the original currents to produce additional amplitudes involving Higgs, longitudinal ZZ or neutrino pairs.Comment: 73 pages, 2 figures (appended in pictex), CLNS 92/115
    • …
    corecore