8,371 research outputs found
Impact of the Redheaded Pine Sawfly (Hymenoptera: Diprionidae) on Young Red Pine Plantations
The ecology of the redheaded pine sawfly was studied relative to its impact on red pine plantations. An ecological model, which formed the basis for socioeconomic analysis, was constructed. Because the sawfly prefers trees under moisture stress, damage is most severe in stands growing on sand blows, where there is competition for moisture from bracken fern and hardwoods, and where soils are too moist, too shallow, or too compacted. Outbreaks also appear to be related to dry years. The sawfly has a variable impact on multiple-use values. Because it injures the least productive trees in a stand, timber is only indirectly affected. Small openings created by tree mortality after an outbreak may provide edge \u27Wildlife habitat. The sawfly has both negative and positive effects on recreationists, depending upon the type of recreation; it may be a nuisance to campers, but may positively influence hunting. Preventive sawfly management involves proper site selection for red pine
Polarographic study of cadmium 5-hydroxy 2-(hydroxymethyl) 4H-pyran-4-one complex
A polarographic study was performed on the products formed in the interaction of cadmium (II) with a 5-hydroxy 2-(hydroxymethyl) 4H-Pyran-4-one, using varying conditions of pH, supporting electrolytes, and concentrations. Measurements using the differential pulse method show that cadmium (II) exhibits a molar combining ratio of complexing agents to cation ranging from 1 to 1 to 3 to 1 depending on the pH and the supporting electrolyte employed
Green's function methods in heavy ion shielding
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments
Laser-Induced Thermal Acoustics Theory and Expected Experimental Errors when Applied to a Scramjet Isolator Model
A scramjet isolator model test apparatus is being assembled in the Isolator Dynamics Research Lab (IDRL) at the NASA Langley Research Center in Hampton, Virginia. The test apparatus is designed to support multiple measurement techniques for investigating the flow field in a scramjet isolator model. The test section is 1-inch high by 2-inch wide by 24-inch long and simulates a scramjet isolator with an aspect ratio of two. Unheated, dry air at a constant stagnation pressure and temperature is delivered to the isolator test section through a Mach 2.5 planar nozzle. The isolator test section is mechanically back-pressured to contain the resulting shock train within the 24-inch isolator length and supports temperature, static pressure, and high frequency pressure measurements at the wall. Additionally, nonintrusive methods including laser-induced thermal acoustics (LITA), spontaneous Raman scattering, particle image velocimetry, and schlieren imaging are being incorporated to measure off-wall fluid dynamic, thermodynamic, and transport properties of the flow field. Interchangeable glass and metallic sidewalls and optical access appendages permit making multiple measurements simultaneously. The measurements will be used to calibrate computational fluid dynamics turbulence models and characterize the back-pressured flow of a scramjet isolator. This paper describes the test apparatus, including the optical access appendages; the physics of the LITA method; and estimates of LITA measurement uncertainty for measurements of the speed of sound and temperature
Laser-Induced Thermal Acoustic Measurements in a Highly Back-Pressured Scramjet Isolator Model: A Research Plan
Under the Propulsion Discipline of NASA s Fundamental Aeronautics Program s Hypersonics Project, a test apparatus, for testing a scramjet isolator model, is being constructed at NASA's Langley Research Center. The test apparatus will incorporate a 1-inch by 2-inch by 15-inch-long scramjet isolator model supplied with 2.1 lbm/sec of unheated dry air through a Mach 2.5 converging-diverging nozzle. The planned research will incorporate progressively more challenging measurement techniques to characterize the flow field within the isolator, concluding with the application of the Laser-Induced Thermal Acoustic (LITA) measurement technique. The primary goal of this research is to use the data acquired to validate Computational Fluid Dynamics (CFD) models employed to characterize the complex flow field of a scramjet isolator. This paper describes the test apparatus being constructed, pre-test CFD simulations, and the LITA measurement technique
Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield
The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely matched the measured surface pressures. This observation is somewhat surprising, given that stress-limiting models have generally been developed to better predict shock-separated flows. All of the models considered also failed to properly predict the shape and extent of the separated flow region caused by the shock boundary layer interactions. However, the best performing models were able to predict the isolator shock train length (an important metric for isolator operability margin) to within 1 isolator duct height
Reliably Making Monolithic Ingots of Difficult to Cast Aluminum Alloys Using Direct Chill Casting
Described are monolithic aluminum alloy ingots and methods of making monolithic aluminum alloy ingots, such as monolithic aluminum alloy ingots comprising brittle aluminum alloys formed by direct chill co-casting the brittle aluminum alloy as a core with a clad layer of another more ductile aluminum alloy as a composite ingot followed by scalping the resultant composite ingot to remove the clad layer
Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization
Hamiltonian light-front field theory can be used to solve for hadron states
in QCD. To this end, a method has been developed for systematic renormalization
of Hamiltonian light-front field theories, with the hope of applying the method
to QCD. It assumed massless particles, so its immediate application to QCD is
limited to gluon states or states where quark masses can be neglected. This
paper builds on the previous work by including particle masses
non-perturbatively, which is necessary for a full treatment of QCD. We show
that several subtle new issues are encountered when including masses
non-perturbatively. The method with masses is algebraically and conceptually
more difficult; however, we focus on how the methods differ. We demonstrate the
method using massive phi^3 theory in 5+1 dimensions, which has important
similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra
disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final
published versio
- …