255 research outputs found
Geomorphic hazards and intense rainfall: the case study of the Recco Stream catchment (Eastern Liguria, Italy)
Abstract. A critical pluviometric event occurred in the central-eastern Ligurian Riviera, 15 km from Genoa, on 1 June 2007. This event caused landslides and hydraulic problems between Sori and Camogli and in the inland area of the Recco Valley. An analysis of the heavy rainfall was conducted. Hourly precipitation data revealed a critical event between 04:00 a.m. and 07:00 a.m. local time, with more than 220 mm of precipitation over three hours. Slope movements were mainly debris flows that detached from the lateral valleys of the Recco Stream catchment and from well-maintained, wooded slopes that were also characterised by cultivated terraces. Numerous slide planes corresponded to the interface between the surface cover and the underlying bedrock, which presents an unfavourable geologic structure in terms of stability assessment. In most cases, the displaced material had a limited thickness. Debris cover was rapidly channelled along small valleys, which controlled the critical hydraulic conditions in the secondary drainage network. Man-made drainage systems were partially or totally blocked in a very short time and, like the natural watercourses, accumulated thick and extensive alluvial fans. Most of the instability phenomena occurred in areas that had been designated medium or low-risk areas during land planning, and in sectors that were defined as stable, because they lacked geomorphic indicators connected to landslide risks. The above considerations highlight some gaps of the Recco Stream Master Plan. Therefore, to update this land planning tool, it is necessary to extensively investigate local geomorphological characteristics and to adopt a different method for assigning weights to the geohazard maps
Reply to Marchi's comment on "Geomorphic hazards and intense rainfall: the case study of the Recco Stream catchment (Eastern Liguria, Italy)" by Faccini et al. (2012)
No abstract available
Adversarial Branch Architecture Search for Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) is a key issue in visual recognition, as it allows to bridge different visual domains enabling robust performances in the real world. To date, all proposed approaches rely on human expertise to manually adapt a given UDA method (e.g. DANN) to a specific backbone architecture (e.g. ResNet). This dependency on handcrafted designs limits the applicability of a given approach in time, as old methods need to be constantly adapted to novel backbones.Existing Neural Architecture Search (NAS) approaches cannot be directly applied to mitigate this issue, as they rely on labels that are not available in the UDA setting. Furthermore, most NAS methods search for full architectures, which precludes the use of pre-trained models, essential in a vast range of UDA settings for reaching SOTA results.To the best of our knowledge, no prior work has addressed these aspects in the context of NAS for UDA. Here we tackle both aspects with an Adversarial Branch Architecture Search for UDA (ABAS): i. we address the lack of target labels by a novel data-driven ensemble approach for model selection; and ii. we search for an auxiliary adversarial branch, attached to a pre-trained backbone, which drives the domain alignment. We extensively validate ABAS to improve two modern UDA techniques, DANN and ALDA, on three standard visual recognition datasets (Office31, Office-Home and PACS). In all cases, ABAS robustly finds the adversarial branch architectures and parameters which yield best performances. https://github.com/lr94/abas
Geomorphic hazards and intense rainfall: the case study of the Recco Stream catchment (Eastern Liguria, Italy)
A critical pluviometric event occurred in the central-eastern Ligurian Riviera, 15 km from Genoa, on 1 June 2007. This event caused landslides and hydraulic problems between Sori and Camogli and in the inland area of the Recco Valley. <br><br> An analysis of the heavy rainfall was conducted. Hourly precipitation data revealed a critical event between 04:00 a.m. and 07:00 a.m. local time, with more than 220 mm of precipitation over three hours. <br><br> Slope movements were mainly debris flows that detached from the lateral valleys of the Recco Stream catchment and from well-maintained, wooded slopes that were also characterised by cultivated terraces. <br><br> Numerous slide planes corresponded to the interface between the surface cover and the underlying bedrock, which presents an unfavourable geologic structure in terms of stability assessment. <br><br> In most cases, the displaced material had a limited thickness. Debris cover was rapidly channelled along small valleys, which controlled the critical hydraulic conditions in the secondary drainage network. <br><br> Man-made drainage systems were partially or totally blocked in a very short time and, like the natural watercourses, accumulated thick and extensive alluvial fans. <br><br> Most of the instability phenomena occurred in areas that had been designated medium or low-risk areas during land planning, and in sectors that were defined as stable, because they lacked geomorphic indicators connected to landslide risks. <br><br> The above considerations highlight some gaps of the Recco Stream Master Plan. Therefore, to update this land planning tool, it is necessary to extensively investigate local geomorphological characteristics and to adopt a different method for assigning weights to the geohazard maps
Co-Occurring Psychiatric and Substance Use Disorders: Clinical Survey Among a Rural Cohort of Italian Patients
Purpose: Dual diagnosis (DD) is the co-occurrence of both a mental illness and a substance use disorder (SUD). Lots of studies have analysed the integrated clinical approach, which involves both psychiatry and toxicology medical experts. The purpose of this study is to analyse the socio-demographic characteristics and treatment strategies of patients with DD in a rural area of Italy. Patients and Methods: Clinical data of 750 patients were collected in 2016 through the analysis of health plan records. Results: The rate of co-occurring disorders is highly variable among people with SUD. In the considered area, patients with DD are 24%, of these only 46.1% have been treated with an integrated clinical program. Moreover, this percentage is further reduced (35.8%) if only patients with heroin use disorder are considered. Conclusion: A comprehensive revision of DD treatment is needed, especially for people suffering from heroin use disorder and living in remote areas. Meticulous data analysis from other addiction health services of rural areas could be necessary to identify a science-based clinical intervention
Ionic Strength Responsive Sulfonated Polystyrene Opals
Stimuli-responsive photonic crystals (PCs) represent an intriguing class of smart materials very promising for sensing applications. Here, selective ionic strength responsive polymeric PCs are reported. They are easily fabricated by partial sulfonation of polystyrene opals, without using toxic or expensive monomers and etching steps. The color of the resulting hydrogel-like ordered structures can be continuously shifted over the entire visible range (405-760 nm) by changing the content of ions over an extremely wide range of concentration (from about 70 μM to 4 M). The optical response is completely independent from pH and temperature, and the initial color can be fully recovered by washing the sulfonated opals with pure water. These new smart photonic materials could find important applications as ionic strength sensors for environmental monitoring as well as for healthcare screening
Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging
In this work, the bottom-up template-assisted preparation of high-density lattices (up to 11 · 10(6) membranes/cm(2)) of suspended polymer membranes with micrometric size (in the order of few μm(2)) and sub-micrometric thickness (in the order of hundreds of nm) is demonstrated for both photoluminescent and non-photoluminescent polymers by capillarity-driven solvent evaporation. Solvent evaporation of low concentration polymer solutions drop-cast on an array of open-ended micropipes is shown to lead to polymer membrane formation at the inlet of the micropipes thanks to capillarity. The method is proven to be robust with high-yield (>98%) over large areas (1 cm(2)) and of general validity for both conjugated and non-conjugated polymers, e.g. poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT), poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV), polystyrene (PS), thus breaking a new ground on the controlled preparation of polymer micro and nanostructures. Angle dependence and thermal stability of photoluminescence emission arising from F8BT membrane lattices was thorough investigated, highlighting a non-Lambertian photoluminescence emission of membrane lattices with respect to F8BT films. The method is eventually successfully applied to the preparation of both photoluminescent and non-photoluminescent micro Quick Response (μQR) codes using different polymers, i.e. F8BT, MDMO-PPV, PS, thus providing micrometric-sized taggants suitable for anti-counterfeiting applications
Compton Scattering by the Proton using a Large-Acceptance Arrangement
Compton scattering by the proton has been measured using the tagged-photon
facility at MAMI (Mainz) and the large-acceptance arrangement LARA. The new
data are interpreted in terms of dispersion theory based on the SAID-SM99K
parameterization of photo-meson amplitudes. It is found that two-pion exchange
in the t-channel is needed for a description of the data in the second
resonance region. The data are well represented if this channel is modeled by a
single pole with mass parameter m(sigma)=600 MeV. The asymptotic part of the
spin dependent amplitude is found to be well represented by pi-0-exchange in
the t-channel. A backward spin-polarizability of
gamma(pi)=(-37.1+-0.6(stat+syst)+-3.0(model))x10^{-4}fm^4 has been determined
from data of the first resonance region below 455 MeV. This value is in a good
agreement with predictions of dispersion relations and chiral pertubation
theory. From a subset of data between 280 and 360 MeV the resonance
pion-photoproduction amplitudes were evaluated leading to a E2/M1 multipole
ratio of the p-to-Delta radiative transition of EMR(340
MeV)=(-1.7+-0.4(stat+syst)+-0.2(model))%. It was found that this number is
dependent on the parameterization of photo-meson amplitudes. With the MAID2K
parameterization an E2/M1 multipole ratio of EMR(340
MeV)=(-2.0+-0.4(stat+syst)+-0.2(model))% is obtained
Radiating and non-radiating sources in elasticity
In this work, we study the inverse source problem of a fixed frequency for
the Navier's equation. We investigate that nonradiating external forces. If the
support of such a force has a convex or non-convex corner or edge on their
boundary, the force must be vanishing there. The vanishing property at corners
and edges holds also for sufficiently smooth transmission eigenfunctions in
elasticity. The idea originates from the enclosure method: The energy identity
and new type exponential solutions for the Navier's equation.Comment: 17 page
- …