11 research outputs found

    Modified Laminar Bone in Ampelosaurus atacis and Other Titanosaurs (Sauropoda): Implications for Life History and Physiology

    Get PDF
    BACKGROUND: Long bone histology of the most derived Sauropoda, the Titanosauria suggests that titanosaurian long bone histology differs from the uniform bone histology of basal Sauropoda. Here we describe the long bone histology of the titanosaur Ampelosaurus atacis and compare it to that of basal neosauropods and other titanosaurs to clarify if a special titanosaur bone histology exists. METHODOLOGY/PRINCIPAL FINDINGS: Ampelosaurus retains the laminar vascular organization of basal Sauropoda, but throughout most of cortical growth, the scaffolding of the fibrolamellar bone, which usually is laid down as matrix of woven bone, is laid down as parallel-fibered or lamellar bone matrix instead. The remodeling process by secondary osteons is very extensive and overruns the periosteal bone deposition before skeletal maturity is reached. Thus, no EFS is identifiable. Compared to the atypical bone histology of Ampelosaurus, the large titanosaur Alamosaurus shows typical laminar fibrolamellar bone. The titanosaurs Phuwiangosaurus, Lirainosaurus, and Magyarosaurus, although differing in certain features, all show this same low amount or absence of woven bone from the scaffolding of the fibrolamellar bone, indicating a clear reduction in growth rate resulting in a higher bone tissue organization. To describe the peculiar primary cortical bone tissue of Phuwiangosaurus, Ampelosaurus, Lirainosaurus, and Magyarosaurus, we here introduce a new term, "modified laminar bone" (MLB). CONCLUSIONS/SIGNIFICANCE: Importantly, MLB is as yet not known from extant animals. At least in Lirainosaurus and Magyarosaurus the reduction of growth rate indicated by MLB is coupled with a drastic body size reduction and maybe also a reduction in metabolic rate, interpreted as a result of dwarfing on the European islands during the Late Cretaceous. Phuwiangosaurus and Ampelosaurus both show a similar reduction in growth rate but not in body size, possibly indicating also a reduced metabolic rate. The large titanosaur Alamosaurus, on the other hand, retained the plesiomorphic bone histology of basal neosauropods

    Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record

    Get PDF
    Fil: García, Rodolfo A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Salgado, Leonardo. Instituto de Investigación en Paleobiología y Geología. General Roca. Río Negro; ArgentinaFil: Fernández, Mariela. Inibioma-Centro Regional Universitario Bariloche. Bariloche. Río Negro; ArgentinaFil: Cerda, Ignacio A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Carabajal, Ariana Paulina. Museo Carmen Funes. Plaza Huincul. Neuquén; ArgentinaFil: Otero, Alejandro. Museo de La Plata. Universidad Nacional de La Plata; ArgentinaFil: Coria, Rodolfo A.. Instituto de Paleobiología y Geología. Universidad Nacional de Río Negro. Neuquén; ArgentinaFil: Fiorelli, Lucas E.. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica. Anillaco. La Rioja; Argentin

    Novel insight into the origin of the growth dynamics of sauropod dinosaurs.

    Get PDF
    Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies

    Oldest camarasauromorph sauropod (Dinosauria) discovered in the Middle Jurassic (Bajocian) of the Khadir Island, Kachchh, western India

    No full text

    Paleobiología de Titanosaurios de Sudamérica: reproducción, desarrollo, histología, neumaticidad, locomoción y neuroanatomía

    No full text
    Much of the current paleobiological knowledge on titanosaur sauropods was attained in just the last fifteen years, in particular that related to reproductive and developmental biology. Recent years have also seen progress on other poorly explored topics, such as pneumaticity, muscle architecture and locomotion, and endocast reconstruction and associated structures. Some titanosaurs laid numerous, relatively small Megaloolithidae eggs (with diameters ranging from 12 to 14 cm) in nests dug In the ground and, as known from the South American records, probably eggs of the multispherulitic morphotype. During ontogeny, certain titanosaurs displayed some variations in cranial morphology, some of them likely associated with the differing feeding habits between hatchlings and adults. The bone tissue of some adult titanosaurs was rapidly and cyclically deposited and shows a greater degree of remodeling than in other sauropods. Saltasaurines in particular show evidence of postcranial skeletal pneumaticity in both axial and appendicular skeleton, providing clues about soft tissue anatomy and the structure of the respiratory system. Titanosaurs, like all sauropods, were characterized by being fully quadrupedal, although some appendicular features and putative trackways indicate that their stance was not as columnar as in other sauropods. These anatomical peculiarities are significantly developed In saltasaurines, a derived group of titanosaurs. Compared with other sauropods, some titanosaurs seem to have had very poor olfaction but would have been capable of capturing sounds In a relatively wide range of high frequencies, although not to the extent of living birds.El conocimiento paleobiológico de los saurópodos titanosaurios, particularmente su reproducción y biología del desarrollo, fue alcanzado recién en los últimos quince años. En estos últimos años también se ha avanzado en temas poco explorados hasta el momento, como la neumatización, su arquitectura muscular y locomoción y la reconstrucción de partes blandas como el cerebro y estructuras asociadas. Algunos titanosaurios depositan sus numerosos y pequeños huevos megaloolitidos en nidos excavados sobre el suelo. Durante la ontogenia ciertos titanosaurios exponen algunas variaciones en su morfología craneana, algunas de estas probablemente asociadas con las diferentes maneras de alimentarse que tendrían los juveniles y los adultos. El tejido óseo de algunos titanosaurios adultos se habría depositado rápido y cíclicamente, exponiendo una mayor remodelación que en otros saurópodos. Los titanosaurios, particularmente los saltasaurinos, exponen una neumaticidad postcraneal en el esqueleto axial y apendicular, este carácter permite Inferir la anatomía de sus tejidos blandos y de su sistema respiratorio. Los titanosaurios, como todos los saurópodos, estaban caracterizados por ser cuadrúpedos, aunque algunos caracteres apendiculares y las huellas indican que su postura no habría sido tan columnar como en otros saurópodos. Aquellas peculiaridades anatómicas están notoriamente desarrolladas en los saltasaurinos, un grupo de titanosaurios derivados. Comparado con otros saurópodos, algunos titanosaurios parecen haber tenido un pobre sentido del olfato, sin embargo estos habrían tenido la capacidad de captar sonidos de alta frecuencia en un rango relativamente amplio, aunque no tanto como las aves actuales.Fil: Garcia, Rodolfo Andres. Provincia de Río Negro. Museo Provincial “Carlos Ameghino”. Instituto de Investigación en Paleobiología y Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Salgado, Leonardo. Provincia de Río Negro. Instituto de Investigación en Paleobiología y Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Cerda, Ignacio Alejandro. Provincia de Río Negro. Museo Provincial “Carlos Ameghino”. Instituto de Investigación en Paleobiología y Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paulina Carabajal, Ariana. Provincia del Neuquen. Municipalidad de Plaza Huincul. Museo "Carmen Funes"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Otero, Alejandro. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Departamento Científico de Paleontología de Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Coria, Rodolfo Anibal. Universidad Nacional de Rio Negro. Sede Alto Valle. Instituto de Investigaciones en Paleobiologia y Geologia; Argentina. Provincia del Neuquen. Municipalidad de Plaza Huincul. Museo "Carmen Funes"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fiorelli, Lucas Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Regional de Investigaciones Cientificas y Transferencia Tecnológica de Anillaco; Argentin
    corecore