221 research outputs found

    Dealloying of Platinum-Aluminum Thin Films Part II. Electrode Performance

    Full text link
    Highly porous Pt/Al thin film electrodes on yttria stabilized zirconia electrolytes were prepared by dealloying of co-sputtered Pt/Al films. The oxygen reduction capability of the resulting electrodes was analyzed in a solid oxide fuel cell setup at elevated temperatures. During initial heating to 523 K exceptionally high performances compared to conventional Pt thin film electrodes were measured. This results from the high internal surface area and large three phase boundary length obtained by the dealloying process. Exposure to elevated temperatures of 673 K or 873 K gave rise to degradation of the electrode performance, which was primarily attributed to the oxidation of remaining Al in the thin films.Comment: 5 pages, 4 figure

    Dealloying of Platinum-Aluminum Thin Films Part I. Dynamics of Pattern Formation

    Full text link
    Applying focused ion beam (FIB) nanotomography and Rutherford backscattering spectroscopy (RBS) to dealloyed platinum-aluminum thin films an in-depth analysis of the dominating physical mechanisms of porosity formation during the dealloying process is performed. The dynamical porosity formation due to the dissolution of the less noble aluminum in the alloy is treated as result of a reaction-diffusion system. The RBS analysis yields that the porosity formation is mainly caused by a linearly propagating diffusion front, i.e. the liquid/solid interface, with a uniform speed of 42(3) nm/s when using a 4M aqueous NaOH solution at room temperature. The experimentally observed front evolution is captured by the normal diffusive Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation and can be interpreted as a branching random walk phenomenon. The etching front produces a gradual porosity with an enhanced porosity in the surface-near regions of the thin film due to prolonged exposure of the alloy to the alkaline solution.Comment: 4 pages, 5 figure

    Efficient template attacks

    Get PDF
    This is the accepted manuscript version. The final published version is available from http://link.springer.com/chapter/10.1007/978-3-319-08302-5_17.Template attacks remain a powerful side-channel technique to eavesdrop on tamper-resistant hardware. They model the probability distribution of leaking signals and noise to guide a search for secret data values. In practice, several numerical obstacles can arise when implementing such attacks with multivariate normal distributions. We propose efficient methods to avoid these. We also demonstrate how to achieve significant performance improvements, both in terms of information extracted and computational cost, by pooling covariance estimates across all data values. We provide a detailed and systematic overview of many different options for implementing such attacks. Our experimental evaluation of all these methods based on measuring the supply current of a byte-load instruction executed in an unprotected 8-bit microcontroller leads to practical guidance for choosing an attack algorithm.Omar Choudary is a recipient of the Google Europe Fellowship in Mobile Security, and this research is supported in part by this Google Fellowship

    Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres

    Full text link
    We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises when the two nanoparticles are as close as possible to contact, as in situ controlled and measured using the tip of an atomic force microscope. The excitation wavelength dependence of the second-harmonic signal supports a coupled plasmon resonance origin with radiation from the dimer gap. This nanometer-size light source might be used for high-resolution near-field optical microscopy.Comment: 6 pages, 5 figure

    Trocar-guided total tension-free vaginal mesh repair of post-hysterectomy vaginal vault prolapse

    Get PDF
    Contains fulltext : 81076.pdf (publisher's version ) (Closed access)INTRODUCTION AND HYPOTHESIS: The objective of this study was to report 1 year anatomical and functional outcomes of trocar-guided total tension-free vaginal mesh (Prolift) repair for post-hysterectomy vaginal vault prolapse with one continuous piece of polypropylene mesh. METHODS: We conducted a prospective observational cohort study of 46 patients. A minimum sample size of 35 patients was needed to detect a recurrence rate of less than 20% at 12 months. Instruments of measurement used were pelvic organ prolapse quantification and validated questionnaires. RESULTS: Overall anatomical success was 91% (95% confidence interval 83-99), with significant improvement in experienced bother and quality of life. Mesh exposure occurred in seven patients (15%). No adverse effects on sexual function could be detected. CONCLUSIONS: Trocar-guided total tension-free vaginal mesh (Prolift) repair with one continuous piece of mesh for post-hysterectomy vaginal vault prolapse is well tolerated and anatomically and functionally highly effective. Results of controlled trials will determine its position in the operative armamentarium

    Mode imaging and selection in strongly coupled nanoantennas

    Full text link
    The number of eigenmodes in plasmonic nanostructures increases with complexity due to mode hybridization, raising the need for efficient mode characterization and selection. Here we experimentally demonstrate direct imaging and selective excitation of the bonding and antibonding plasmon mode in symmetric dipole nanoantennas using confocal two-photon photoluminescence mapping. Excitation of a high-quality-factor antibonding resonance manifests itself as a two-lobed pattern instead of the single spot observed for the broad bonding resonance, in accordance with numerical simulations. The two-lobed pattern is observed due to the fact that excitation of the antibonding mode is forbidden for symmetric excitation at the feedgap, while concomitantly the mode energy splitting is large enough to suppress excitation of the bonding mode. The controlled excitation of modes in strongly coupled plasmonic nanostructures is mandatory for efficient sensors, in coherent control as well as for implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio
    • …
    corecore