182 research outputs found
Modulatory effects of levodopa on cerebellar connectivity in Parkinsonās disease
Levodopa has been the mainstay of symptomatic therapy for Parkinsonās disease (PD) for the last five decades. However, it is associated with the development of motor fluctuations and dyskinesia, in particular after several years of treatment. The aim of this study was to shed light on the acute brain functional reorganization in response to a single levodopa dose. Functional magnetic resonance imaging (fMRI) was performed after an overnight withdrawal of dopaminergic treatment and 1 h after a single dose of 250 mg levodopa in a group of 24 PD patients. Eigenvector centrality was calculated in both treatment states using resting-state fMRI. This offers a new data-driven and parameter-free approach, similar to Googleās PageRank algorithm, revealing brain connectivity alterations due to the effect of levodopa treatment. In all PD patients, levodopa treatment led to an improvement of clinical symptoms as measured with the Unified Parkinsonās Disease Rating Scale motor score (UPDRS-III). This therapeutic effect was accompanied with a major connectivity increase between cerebellar brain regions and subcortical areas of the motor system such as the thalamus, putamen, globus pallidus, and brainstem. The degree of interconnectedness of cerebellar regions correlated with the improvement of clinical symptoms due to the administration of levodopa. We observed significant functional cerebellar connectivity reorganization immediately after a single levodopa dose in PD patients. Enhanced general connectivity (eigenvector centrality) was associated with better motor performance as assessed by UPDRS-III score. This underlines the importance of considering cerebellar networks as therapeutic targets in PD
Different brain areas require different analysis models: fMRI observations in Parkinsonās disease
Foreseeing how specific brain areas respond in time to a stimulus can be a prerequisite for a successfully conceived fMRI experiment. We demonstrate that in medicated Parkinsonās disease patients, putamen's activation peaks around the onset of tapping but does not persist throughout the tapping block, whereas sustained activation is observed in the motor cortex. Consequently, in the widely used tapping paradigm āOn vs. Off L-DOPAā, the drug effect remains undetected if statistical analysis apply a block design instead of an event-related one. Ignoring this information can lead to fallacious conclusions which suggests using different models to investigate different brain regions
Improving brain imaging in Parkinson's disease by accounting for simultaneous motor output
Parkinson's disease leads to a variety of movement impairments. While studying the disease with fMRI, the main motivation for the research becomes one of its major obstacles: the motor output is unpredictable. Therefore it is troublesome to access, inside the scanner, performances of motor tasks and reliably relate them to brain measurements. We proposed to overcome this by expanding the patientsā number and restricting statistical criteria from a previous study which used a glove with non-magnetic sensors during scanning. Our results revealed basal ganglia not observed in the previous study confirming the usefulness of the device in fMRI studies
Improving fMRI in Parkinson's disease by accounting for realistic motor output
In Parkinson's disease (PD), the motor loop functioning and the patientsā motor output are unpredictable, due to brain compensatory mechanisms initiated up to decades before diagnosis. Consequently, the accuracy of motor tasks during fMRI is impeded, and deviations of the movement performance affect results. Kinematic modeling based on simultaneous measurements with MR-compatible gloves has been previously proposed as means to address this problem and outperform conventional boxcar modeling (Standard). Here, we adopted this approach in a larger cohort along with conservative statistics employing family-wise error (FWE) correction at the voxel level (p< 0.05) to be less prone to produce false positives
Restoration of functional network state towards more physiological condition as the correlate of clinical effects of pallidal deep brain stimulation in dystonia
Background: Deep brain stimulation of the internal globus pallidus (GPi DBS) is an invasive therapeutic modality intended to retune abnormal central nervous system patterns and relieve the patient of dystonic or other motor symptoms. Objectives: The aim of the presented research was to determine the neuroanatomical signature of GPi DBS modulation and its association with the clinical outcome. Methods: This open-label fixed-order study with cross-sectional validation against healthy controls analysed the resting-state functional MRI activity changes induced by GPi DBS in 18 dystonia patients of heterogeneous aetiology, focusing on both global (full brain) and local connectivity (local signal homogeneity). Results: Compared to the switched-off state, the activation of GPi DBS led to the restoration of global subcortical connectivity patterns (in both putamina, diencephalon and brainstem) towards those of healthy controls, with positive direct correlation over large-scale cortico-basal ganglia-thalamo-cortical and cerebellar networks with the clinical improvement. Nonetheless, on average, GPi DBS also seemed to bring local connectivity both in the cortical and subcortical regions farther away from the state detected in healthy controls. Interestingly, its correlation with clinical outcome showed that in better DBS responders, local connectivity defied this effect and approached healthy controls. Conclusions: All in all, the extent of restoration of both these main metrics of interest towards the levels found in healthy controls clearly correlated with the clinical improvement, indicating that the restoration of network state towards more physiological condition may be a precondition for successful GPi DBS outcome in dystonia
Symptom-severity-related brain connectivity alterations in functional movement disorders
Background Functional movement disorders, a common cause of neurological disabilities, can occur with heterogeneous motor manifestations including functional weakness. However, the underlying mechanisms related to brain function and connectivity are unknown. Objective To identify brain connectivity alterations related to functional weakness we assessed network centrality changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in combination with different network centrality approaches. Methods Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional connectivity differences were assessed using different network centrality approaches, i.e. global correlation, eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified Functional Movement Disorders Rating Scale and correlated with network centrality. Results Comparing patients with and without functional weakness showed significant network centrality differences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, in the same regions, patients with functional weakness showed a positive correlation between motor symptom severity and network centrality. This correlation was shown to be specific to functional weakness with an interaction analysis, confirming a significant difference between patients with and without functional weakness. Conclusions We identified the temporoparietal junction and precuneus as key regions involved in brain connectivity alterations related to functional weakness. We propose that both regions may be promising targets for phenotype-specific non-invasive brain stimulation
Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis
Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBAā+āKin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBAā+āKin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 Ī¼M, enhances AR-formation, when combined with IBAā+āKin, and the response of the early-JA-biosynthesis mutant dde2ā2 and the JA-signalling mutant coi1ā16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species
Weight Gain Is Associated with Medial Contact Site of Subthalamic Stimulation in Parkinson's Disease
The aim of our study was to assess changes in body-weight in relation to active electrode contact position in the subthalamic nucleus. Regular body weight measurements were done in 20 patients with advanced Parkinson's disease within a period of 18 months after implantation. T1-weighted (1.5T) magnetic resonance images were used to determine electrode position in the subthalamic nucleus and the Unified Parkinson's disease rating scale (UPDRS-III) was used for motor assessment. The distance of the contacts from the wall of the third ventricle in the mediolateral direction inversely correlated with weight gain (rā=āā0.55, p<0.01) and with neurostimulation-related motor condition expressed as the contralateral hemi-body UPDRS-III (rā=āā0.42, p<0.01). Patients with at least one contact within 9.3 mm of the wall experienced significantly greater weight gain (9.4Ā±(SD)4.4 kg, Nā=ā11) than those with both contacts located laterally (3.9Ā±2.7 kg, Nā=ā9) (p<0.001). The position of the active contact is critical not only for motor outcome but is also associated with weight gain, suggesting a regional effect of subthalamic stimulation on adjacent structures involved in the central regulation of energy balance, food intake or reward
- ā¦