51 research outputs found
Bioavailability and dose-dependent anti-tumour effects of 9-cis retinoic acid on human neuroblastoma xenografts in rat
Neuroblastoma, the most common extracranial solid tumour in children, may undergo spontaneous differentiation or regression, but the majority of metastatic neuroblastomas have poor prognosis despite intensive treatment. Retinoic acid regulates growth and differentiation of neuroblastoma cells in vitro, and has shown activity against human neuroblastomas in vivo. The retinoid 9-cis RA has been reported to induce apoptosis in vitro, and to inhibit the growth of human neuroblastoma xenografts in vivo. However, at given dosage, the treatment with 9-cis RA caused significant toxic side effects. In the present study we investigated the bioavailability of 9-cis RA in rat. In addition, we compared two different dose schedules using 9-cis RA. We found that a lower dose of 9-cis RA (2 mg day−1) was non-toxic, but showed no significant effect on tumour growth. The bioavailability of 9-cis RA in rat was 11% and the elimination half-life (t1/2) was 35 min. Considering the short t1/2, we divided the toxic, but tumour growth effective dose 5 mg dayminus;1 into 2.5 mg p.o. twice daily. This treatment regimen showed no toxicity but only limited effect on tumour growth. Our results suggest that 9-cis RA may only have limited clinical significance for treatment of children with poor prognosis neuroblastoma. © 2001 Cancer Research Campaign http://www.bjcancer.co
Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia
High frequencies of blasts in primary acute lymphoblastic leukaemia (ALL) samples have the potential to induce leukaemia and to engraft mice. However, it is unclear how individual ALL cells each contribute to drive leukaemic development in a bulk transplant and the extent to which these blasts vary functionally. We used cellular barcoding as a fate mapping tool to track primograft ALL blasts in vivo. Our results show that high numbers of ALL founder cells contribute at similar frequencies to leukaemic propagation over serial transplants, without any clear evidence of clonal succession. These founder cells also exhibit equal capacity to home and engraft to different organs, although stochastic processes may alter the composition in restrictive niches. Our findings enhance the stochastic stem cell model of ALL by demonstrating equal functional abilities of singular ALL blasts and show that successful treatment strategies must eradicate the entire leukaemic cell population
Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer
Metastasis is the leading cause of cancer-related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark, but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single-cell RNA-sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed mitogen-activated protein kinase 7/matrix metallopeptidase 9 (MAPK7/MMP9) signalling as a driver for primary bone cancer metastasis. RNA interference knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable
Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)
The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children
Molecular targeting of retinoic acid metabolism in neuroblastoma: the role of the CYP26 inhibitor R116010 in vitro and in vivo
Isomerisation to all-trans-retinoic acid (ATRA) is widely accepted as the key mechanism underlying the favourable clinical properties of 13-cis-retinoic acid (13cisRA). As intracellular metabolism of ATRA by CYP26 may result in clinical resistance to 13cisRA, an increase in efficacy may be achieved through modulation of this metabolic pathway. We have evaluated the effect of the CYP26 inhibitor R116010 on retinoid metabolism in neuroblastoma cell lines and a xenograft model. In neuroblastoma cells, which showed a high level of CYP26 induction in response to ATRA, R116010 selectively inhibited ATRA metabolism. In addition, siRNA-mediated knockdown of CYP26 selectively increased ATRA levels and the expression of retinoid-responsive marker genes was potentiated by R116010. Treatment of mice bearing SH-SY5Y xenografts with 13cisRA (100 mg kg−1) revealed substantial levels (16%) of intratumoral ATRA after 6 h, despite plasma ATRA levels representing only 1% total retinoids under these conditions. Co-administration of R116010 with 13cisRA in this mouse model resulted in significant increases in plasma ATRA and 13cisRA concentrations. Furthermore, R116010 induced significant decreases in levels of 4-oxo metabolites in hepatic tissue after co-administration with either ATRA or 13cisRA. These data suggest considerable potential for CYP26 inhibitors in the future treatment of neuroblastoma with 13cisRA
Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells
Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma
Autocrine Prostaglandin E2 Signaling Promotes Tumor Cell Survival and Proliferation in Childhood Neuroblastoma
Background: Prostaglandin E2 (PGE2) is an important mediator in tumor-promoting inflammation. High expression of cyclooxygenase-2 (COX-2) has been detected in the embryonic childhood tumor neuroblastoma, and treatment with COX inhibitors significantly reduces tumor growth. Here, we have investigated the significance of a high COX-2 expression in neuroblastoma by analysis of PGE2 production, the expression pattern and localization of PGE2 receptors and intracellular signal transduction pathways activated by PGE2. Principal Findings: A high expression of the PGE2 receptors, EP1, EP2, EP3 and EP4 in primary neuroblastomas, independent of biological and clinical characteristics, was detected using immunohistochemistry. In addition, mRNA and protein corresponding to each of the receptors were detected in neuroblastoma cell lines. Immunofluorescent staining revealed localization of the receptors to the cellular membrane, in the cytoplasm, and in the nuclear compartment. Neuroblastoma cells produced PGE2 and stimulation of serum-starved neuroblastoma cells with PGE2 increased the intracellular concentration of calcium and cyclic AMP with subsequent phosphorylation of Akt. Addition of 16,16-dimethyl PGE 2 (dmPGE2) increased cell viability in a time, dose- and cell line-dependent manner. Treatment of neuroblastoma cells with a COX-2 inhibitor resulted in a diminished cell growth and viability that was reversed by the addition of dmPGE2. Similarly, PGE 2 receptor antagonists caused a decrease in neuroblastoma cell viability in a dose-dependent manner
Carbonyl Reductase 3 (CBR3) Mediates 9-cis-Retinoic Acid-Induced Cytostatis and is a Potential Prognostic Marker for Oral Malignancy
The molecular mechanisms of growth suppression by retinoic acid (RA) were examined. Our results suggest that the cytostatic effects of RA could be mediated by the activation of endogenous CBR3 gene in oral squamous cell carcinomas (OSCCs), and the expression is a potential marker for oral malignancy
- …