35 research outputs found

    Elpasolite scintillators.

    Get PDF
    This work was funded by the U.S. Department of Energy Office of Nonproliferation Research to develop elpasolite materials, with an emphasis on high-atomic-number rare-earth elpasolites for gamma-ray spectrometer applications. Low-cost, high-performance gamma-ray spectrometers are needed for detection of nuclear proliferation. Cubic materials, such as some members of the elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise due to their high light output, proportionality, and potential for scale-up. Using both computational and experimental studies, a systematic investigation of the composition-structure-property relationships of these high-atomic-number elpasolite halides was performed. The results reduce the barrier to commercialization of large single crystals or transparent ceramics, and will facilitate economical scale-up of elpasolites for high-sensitivity gamma-ray spectroscopy

    Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics

    Get PDF
    Mesoporous non-interpenetrating stilbene-based lanthanide metal organic frameworks exhibits photo and radioluminescence behavior.</p

    Molecular Dynamics Studies of Dislocations in CdTe Crystals from a New Bond Order Potential

    Get PDF
    Cd1-xZnxTe (CZT) crystals are the leading semiconductors for radiation detection, but their application is limited by the high cost of detector-grade materials. High crystal costs primarily result from property non-uniformity that causes low manufacturing yield. While tremendous efforts have been made in the past to reduce Te inclusions / precipitates in CZT, this has not resulted in an anticipated improvement in material property uniformity. Moreover, it is recognized that in addition to Te particles, dislocation cells can also cause electric field perturbation and the associated property non-uniformity. Further improvement of the material, therefore, requires that dislocations in CZT crystals be understood and controlled. Here we use a recently developed CZT bond order potential to perform representative molecular dynamics simulations to study configurations, energies, and mobilities of 29 different types of possible dislocations in CdTe (i.e., x = 1) crystals. An efficient method to derive activation free energies and activation volumes of thermally activated dislocation motion will be explored. Our focus gives insight into understanding important dislocations in the material, and gives guidance toward experimental efforts for improving dislocation network structures in CZT crystals

    DRD4 Polymorphism Moderates the Effect of Alcohol Consumption on Social Bonding

    Get PDF
    Development of interpersonal relationships is a fundamental human motivation, and behaviors facilitating social bonding are prized. Some individuals experience enhanced reward from alcohol in social contexts and may be at heightened risk for developing and maintaining problematic drinking. We employed a 3 (group beverage condition) ×2 (genotype) design (N = 422) to test the moderating influence of the dopamine D4 receptor gene (DRD4 VNTR) polymorphism on the effects of alcohol on social bonding. A significant gene x environment interaction showed that carriers of at least one copy of the 7-repeat allele reported higher social bonding in the alcohol, relative to placebo or control conditions, whereas alcohol did not affect ratings of 7-absent allele carriers. Carriers of the 7-repeat allele were especially sensitive to alcohol's effects on social bonding. These data converge with other recent gene-environment interaction findings implicating the DRD4 polymorphism in the development of alcohol use disorders, and results suggest a specific pathway by which social factors may increase risk for problematic drinking among 7-repeat carriers. More generally, our findings highlight the potential utility of employing transdisciplinary methods that integrate genetic methodologies, social psychology, and addiction theory to improve theories of alcohol use and abuse

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Use of metal organic fluors for spectral discrimination of neutrons and gammas.

    No full text
    A new method for spectral shape discrimination (SSD) of fast neutrons and gamma rays has been investigated. Gammas interfere with neutron detection, making efficient discrimination necessary for practical applications. Pulse shape discrimination (PSD) in liquid organic scintillators is currently the most effective means of gamma rejection. The hazardous liquids, restrictions on volume, and the need for fast timing are drawbacks to traditional PSD scintillators. In this project we investigated harvesting excited triplet states to increase scintillation yield and provide distinct spectral signatures for gammas and neutrons. Our novel approach relies on metal-organic phosphors to convert a portion of the energy normally lost to the scintillation process into useful luminescence with sub-microsecond lifetimes. The approach enables independent control over delayed luminescence wavelength, intensity, and timing for the first time. We demonstrated that organic scintillators, including plastics, nanoporous framework materials, and oil-based liquids can be engineered for both PSD and SSD
    corecore