687 research outputs found
Regulation Versus Taxation
We study which policy tool and at what level a majority chooses in order to reduce activities with negative externalities. We consider three instruments: a rule, that sets an upper limit to the activity which produces the negative externality, a quota that forces a proportional reduction of the activity, and a proportional tax on it. For all instruments the majority chooses levels which are too restrictive when the activity is performed mainly by a small fraction of the population, and when costs for reducing activities or paying taxes are sufficiently convex. Also a majority may prefer an instrument different than what a social planner would choose; for instance a rule when the social planner would choose a tax.
Cerebral venous hemodynamic abnormalities in episodic and chronic migraine
Alterations of cerebral venous drainage have been demonstrated in chronic migraine (CM), suggesting that cerebral venous hemodynamic abnormalities (CVHAs) play a role in this condition. The aim of the present study was to look for a correlation between CM and CVHAs. We recruited 33 subjects suffering from CM with or without analgesic overuse, 29 episodic migraine (EM) patients with or without aura, and 21 healthy subjects as controls (HCs). CVHAs were evaluated by transcranial and extracranial echo-color Doppler evaluation of five venous hemodynamic parameters. CVHAs were significantly more frequent in the CM and EM patients than in the HCs. In the migraine patients, CVHAs were not correlated with clinical features. Cerebral venous hemodynamic abnormalities in episodic and chronic migraine The significantly greater frequency of CVHAs observed in the migraineurs may reflect a possible relationship between migraine and these abnormalities. Prospective longitudinal studies are needed to investigate whether CVHAs have a role in the processes of migraine chronification
The stress shadow induced by the 1975-1984 Krafla rifting episode
It has been posited that the 1975\u20131984 Krafla rifting episode in northern Iceland was responsible for a significant drop in the rate of earthquakes along the H\ufasav\uedk\u2010Flatey Fault (HFF), a transform fault that had previously been the source of several magnitude 6\u20137 earthquakes. This compelling case of the existence of a stress shadow has never been studied in detail, and the implications of such a stress shadow remain an open question. According to rate\u2010state models, intense stress shadows cause tens of years of low seismicity rate followed by a faster recovery phase of rate increase. Here, we compare the long\u2010term predictions from a Coulomb stress model of the rifting episode with seismological observations from the SIL catalog (1995\u20132011) in northern Iceland. In the analyzed time frame, we find that the rift\u2010induced stress shadow coincides with the eastern half of the fault where the observed seismicity rates are found to be significantly lower than expected, given the historical earthquake activity there. We also find that the seismicity rates on the central part of the HFF increased significantly in the last 17 years, with the seismicity progressively recovering from west to east. Our observations confirm that rate\u2010state theory successfully describes the long\u2010term seismic rate variation during the reloading phase of a fault invested by a negative Coulomb stress. Coincident with this recovery, we find that the b\u2010value of the frequency\u2010magnitude distribution changed significantly over time. We conclude that the rift\u2010induced stress shadow not only decreased the seismic rate on the eastern part of the HFF but also temporarily modified how the system releases seismic energy, with more large magnitude events in proportion to small ones. This behavior is currently being overturned, as rift\u2010induced locking is now being compensated by tectonic forcing
Experiments of convective evaporation of refrigerant R513A in a horizontal stainless-steel tube
Refrigerant R513A represents an interesting solution for the retrofit of conventional high-GWP fluorinated gases, such as R134a, R401A, R401B and R409A for low and medium temperature applications. R513A is an azeotropic mixture (almost zero-temperature glide at any operating pressure) made up of R134a and R1234yf (44% and 56% in mass, respectively), allowing at the same time a very low GWP of 580 and favourable safety characteristics such as no flammability and no toxicity (A1 ASHRAE class). The boiling performance of this blend is scarcely explored and studied in scientific literature, especially in case of commercial tubes typically adopted for refrigeration purposes. For this reason, this paper presents two-phase flow boiling experiments of refrigerant R513A in a 6.00 mm horizontal stainless-steel tube. Heat is provided by means of Joule effect directly on the tube surface, and the peripheral average heat transfer coefficients are obtained by measuring the temperatures at four sides (top, bottom, left and right) of the channel. The effect of the operating conditions is experimented and discussed, by varying the mass flux between 150 and 300 kg/m2 s, saturation temperature between 20 and 50°C and imposed heat flux between 5 and 20 kW/m2. Also, a comparison with the boiling performance of refrigerant R134a is proposed within the same operating conditions. Finally, the assessment of well-known flow boiling prediction methods is presented and discussed
Stress inversions to forecast magma pathways and eruptive vent location
When a batch of magma reaches Earth\u2019s surface, it forms a vent from which volcanic products are erupted. At many volcanoes, successive batches may open vents far away from previous ones, resulting in scattered, sometimes seemingly random spatial distributions. This exposes vast areas to volcanic hazards and makes forecasting difficult. Here, we show that magma pathways and thus future vent locations may be forecast by combining the physics of magma transport with a Monte Carlo inversion scheme for the volcano stress history. We validate our approach on a densely populated active volcanic field, Campi Flegrei (Italy), where we forecast future vents on an onshore semi-annular belt located between 2.3 and 4.2 km from the caldera center. Our approach offers a mechanical explanation for the vent migration over time at Campi Flegrei and at many calderas worldwide and may be applicable to volcanoes of any type
Synthesis, variable temperature NMR investigations and solid state characterisation of novel octafluorofluorene compounds
The preparation of a number of new 9-substituted octafluorofluorene derivatives, solution NMR studies, and the first examples of solid state structures of octafluorofluorenes [1,2,3,4,5,6,7,8-octafluorofluorene, C13H2F8, 1; 1,2,3,4,5,6,7,8-octafluoro-9-(pentafluoro)phenylfluorene, C19HF13, 8; 1,1′,2,2′,3,3′,4,4′,5,5′,6,6′,7,7′,8,8′-hexadecafluoro-9,9′-bifluorenyl, C26H2F16, 11] are reported. Variable temperature 19F NMR investigations have been performed on the 9-aryl substituted compounds 1,2,3,4,5,6,7,8-octafluoro-9-(pentafluoro)phenyl-9-hydroxyfluorene, C19HF13O, 4, 1,2,3,4,5,6,7,8-octafluoro-9-(nonafluoro-4′-biphenylyl)-9-hydroxyfluorene, C25HF17O, 5, and 8, and the energetic barriers to rotation of the aryl have been determined. A lower rotational barrier is observed for compound 4 with respect to compound 8, while 5 does not show fluxional behaviour below 338 K. The results of the variable temperature experiments performed on 8 have been rationalized by 2D NMR studies, and compared to the solid state data resulting from the X-ray structural analysis
Impedance measurements and simulations on the TCT and TDI LHC collimators
The LHC collimation system is a critical element for
the safe operation of the LHC machine and it is subject
to continuous performance monitoring, hardware upgrade
and optimization. In this work we will address the impact
on impedance of the upgrades performed on the injection
protection target dump (TDI), where the absorber material
has been changed to mitigate the device heating observed
in machine operation, and on selected secondary (TCS) and
tertiary (TCT) collimators, where beam position monitors
(BPM) have been embedded for faster jaw alignment. Con-
cerning the TDI, we will present the RF measurements per-
formed before and after the upgrade, comparing the result
to heating and tune shift beam measurements. For the TCTs,
we will study how the higher order modes (HOM) intro-
duced by the BPM addition have been cured by means of
ferrite placement in the device. The impedance mitigation
campaign has been supported by RF measurements whose
results are in good agreement with GdfidL and CST simula-
tions. The presence of undamped low frequency modes is
proved not to be detrimental to the safe LHC operation
Pseudoangiomatous stromal hyperplasia: an unsuspected cause of anisomasty
Breast asymmetry can be congenital or developmental, however a tumorous growth may be the cause of this condition after puberty. A 19-year-old female presented with a slowly developing breast asymmetry pre-operatively diagnosed as Pseudoangiomatous Stromal Hyperplasia (PASH). The patient underwent tumour excision with breast gland remodelling. Postoperative course was uneventful
- …