608 research outputs found

    Study of the TEC data obtained from the DORIS stations in relation to seismic activity

    Get PDF
    Ionospheric data obtained from the DORIS system are used in this paper. The DORIS system is composed of several ground-based beacons which emit at two frequencies (400 MHz and 2 GHz) and of receivers on board several satellites (currently SPOT2, SPOT4, SPOT5, Topex-Poseidon, Jason1 and Envisat). Thanks to the density of its network coverage (∌50 stations), DORIS provides information on the ionosphere. The TEC (Total Electron Content) parameter which is the electron density integrated over the vertical could be obtained from DORIS measurements. In a first step, the paper describes the way to obtain the TEC data from the DORIS ionospheric measurements, and comparisons of the results are done with the IRI2001 model. In a second step, TEC values are used to search for correlation between ionospheric perturbations and seismic activity. Earthquakes of magnitude larger than 5 are chosen close to the ground-based DORIS stations. Among other results, the statistics show that, during the night time and at geomagnetic latitude close to the equator (<10°), TEC amplitude fluctuates at the time of the earthquakes as it is expected, but also 2 days and 5 days before

    Statistical investigation of VLF quasiperiodic emissions measured by the DEMETER spacecraft

    No full text
    International audienceWe present a survey of quasiperiodic (QP) ELF/VLF emissions detected onboard the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite (altitude of about 700 km, nearly Sun-synchronous orbit at 10:30/22:30 LT). Six years of data have been visually inspected for the presence of QP emissions with modulation periods higher than 10 s and with frequency bandwidths higher than 200 Hz. It is found that these QP events occur in about 5% of daytime half orbits, while they are basically absent during the night. The events occur predominantly during quiet geomagnetic conditions following the periods of enhanced geomagnetic activity. Their occurrence and properties are systematically analyzed. QP emissions occur most often at frequencies from about 750 Hz to 2 kHz, but they may be observed at frequencies as low as 500 Hz and as high as 8 kHz. Modulation periods of QP events may range from about 10 to 100 s, with typical values of 20 s. Frequency drifts of the identified events are generally positive, but they are lower for events with larger modulation periods. The events are usually limited to higher L values (L > 2). The upper L shell boundary of their occurrence could not be identified using the DEMETER data, but they are found to extend up to at least L ~ 6. The occurrence rate of the events is significantly lower at the longitudes of the South Atlantic anomaly (by a factor of more than 2)

    Quasiperiodic emissions observed by the Cluster spacecraft and their association with ULF magnetic pulsations

    Get PDF
    International audience[1] Quasiperiodic (QP) emissions are electromagnetic waves at frequencies of about 0.5–4 kHz characterized by a periodic time modulation of the wave intensity, with a typical modulation period on the order of minutes. We present results of a survey of QP emissions observed by the Wide-Band Data (WBD) instruments on board the Cluster spacecraft. All WBD data measured in the appropriate frequency range during the first 10 years of operation (2001–2010) at radial distances lower than 10 R E were visually inspected for the presence of QP emissions, resulting in 21 positively identified events. These are systematically analyzed, and their frequency ranges and modulation periods are determined. Moreover, a detailed wave analysis has been done for the events that were strong enough to be seen in low-resolution Spatio-Temporal Analysis of Field Fluctuations-Spectrum Analyzer data. Wave vectors are found to be nearly field-aligned in the equatorial region, but they become oblique at larger geomagnetic latitudes. This is consistent with a hypothesis of unducted propagation. ULF magnetic field pulsations were detected at the same time as QP emissions in 4 out of the 21 events. They were polarized in the plane perpendicular to the ambient magnetic field, and their frequencies roughly corresponded to the modulation period of the QP events. Citation: Němec , F., O. Santolík, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2013), Quasiperiodic emissions observed by the Cluster spacecraft and their association with ULF magnetic pulsations

    Low-latitude ionospheric turbulence observed by Aureol-3 satellite

    Get PDF
    Using PSD (Power Spectral Density) data on electron density and electric field variations observed on board Aureol-3 satellite at low-to-mid-latitude ionosphere we analyze a scale distribution of the ionospheric turbulence in a form &lt;i&gt;k&lt;sup&gt;-&amp;alpha;&lt;/sup&gt;&lt;/i&gt;, where &lt;i&gt;k&lt;/i&gt; is the wave number and &amp;alpha; is the spectral index. At first, high-resolution data in the near-equator region for several orbits have been processed. In this case the frequency range is from 6Hz to 100Hz (corresponding spatial scales from 80m to 1.3km), each power spectrum obeys a single power law fairly well, and the mean spectral indices are rather stable with &amp;alpha;&lt;sub&gt;&lt;i&gt;N&lt;/i&gt;&lt;/sub&gt;=2.2&amp;plusmn;0.3 and &amp;alpha;&lt;sub&gt;&lt;i&gt;E&lt;/i&gt;&lt;/sub&gt;=1.8&amp;plusmn;0.2, for the density and electric field, respectively. Then we produce a statistical study of 96 electric field bursts in the frequency range 10-100Hz from low-time resolution data (filter bank envelope). These bursts concentrate on the side of the Equatorial Anomaly crest (geomagnetic latitude 30-40&amp;deg;). Spectral indices of the bursts vary in the interval &amp;alpha;&lt;sub&gt;&lt;i&gt;E&lt;/i&gt;&lt;/sub&gt;=2.0-2.5 but are fairly stable in seasons and local times. The electric field power of the burst has rather a large variability but has a relative increase in mean values for the summer and winter, as well as the daytime. The effect of major seismic activities toward the ionospheric turbulence is not conclusive either for the refractive index or for the electric field power. However, the mean value for the electric field power of bursts during seismic periods is larger than that for non seismic periods, and the statistical difference of the mean values is rather significant

    Lattice thermal conductivity of disordered NiPd and NiPt alloys

    Full text link
    Numerical calculations of lattice thermal conductivity are reported for the binary alloys NiPd and NiPt. The present work is a continuation of an earlier paper by us [PRB, 72, 214207 (2005)]which had developed a theoretical framework for the calculation of configuration-averaged lattice thermal conductivity and thermal diffusivity in disordered alloys. The formulation was based on the augmented space theorem combined with a scattering diagram technique. In this paper we shall show dependence of the lattice thermal conductivity on a series of variables like phonon frequency, temperature and alloy composition. The temperature dependence of Îș(T)\kappa(T) and its realtion to the measured thermal conductivity is discussed. The concentration dependence of Îș\kappa appears to justify the notion of a minimum thermal conductivity as discussed by Kittel, Slack and others. We also study the frequency and composition dependence of the thermal diffusivity averaged over modes. A numerical estimate of this quantity gives an idea about the location of mobility edge and the fraction of states in the frequency spectrum which is delocalized.Comment: 23 pages, 18 figure

    Assigning the causative lightning to the whistlers observed on satellites

    No full text
    International audienceWe study the penetration of lightning induced whistler waves through the ionosphere by investigating the correspondence between the whistlers observed on the DEMETER and MAGION-5 satellites and the lightning discharges detected by the European lightning detection network EUCLID. We compute all the possible differences between the times when the whistlers were observed on the satellite and times when the lightning discharges were detected. We show that the occurrence histogram for these time differences exhibits a distinct peak for a particular characteristic time, corresponding to the sum of the propagation time and a possible small time shift between the absolute time assigned to the wave record and the clock of the lightning detection network. Knowing this characteristic time, we can search in the EUCLID database for locations, currents, and polarities of causative lightning discharges corresponding to the individual whistlers. We demonstrate that the area in the ionosphere through which the electromagnetic energy induced by a lightning discharge enters into the magnetosphere as whistler mode waves is up to several thousands of kilometres wide

    Spectral features of lightning-induced ion cyclotron waves at low latitudes: DEMETER observations and simulation

    No full text
    International audience[1] We use a comprehensive analysis of 6-component ELF wave data from the DEMETER satellite to study proton whistlers, placing emphasis on low-latitude events originating from lightning strokes in the hemisphere opposite to the hemisphere of observation. In this case, the formation of proton whistlers does not involve mode conversion caused by a strong mode coupling at a crossover frequency, although a polarization reversal remains an important element in formation of the phenomenon. DEMETER measurements of the six electromagnetic field components in the frequency band below 1000 Hz make it possible to determine not only the dynamic spectrum, but also the wave polarization, the wave normal angle, and the normalized parallel component of the Poynting vector. This permits us to address fine features of proton whistlers, in particular, we show that the deviation of the upper cutoff frequency from the equatorial cyclotron frequency is related to the Doppler shift. Experimental study of proton whistlers is supplemented by an investigation of ion cyclotron wave propagation in a multicomponent magnetoplasma and by numerical modeling of spectrograms, both in the frame of geometrical optics

    Variations of VLF/LF signals observed on the ground and satellite during a seismic activity in Japan region in May–June 2008

    Get PDF
    Signals of two Japanese transmitters (22.2 kHz and 40 kHz) recorded on the ground VLF/LF station in Petropavlovsk-Kamchatsky and on board the DEMETER French satellite have been analyzed during a seismic activity in Japan in May–June 2008. The period of analysis was from 18 April to 27 June. During this time two rather large earthquakes occurred in the north part of Honshu Island – 7 May (&lt;i&gt;M&lt;/i&gt;=6.8) and 13 June (&lt;i&gt;M&lt;/i&gt;=6.9). The ground and satellite data were processed by a method based on the difference between the real signal in nighttime and the model one. For ground observations a clear decrease in both signals has been found several days before the first earthquake. For the second earthquake anomalies were detected only in JJI signal. The epicenters of earthquakes were in reliable reception zone of 40 kHz signal on board the DEMETER. Signal enhancement above the seismic active region and significant signal intensity depletion in the magnetically conjugate area has been found for satellite observation before the first earthquake. Anomalies in satellite data coincide in time with those in the ground-based observation

    Fractal Metrology for biogeosystems analysis

    Get PDF
    The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (&lt;i&gt;Chernozem, Solonetz&lt;/i&gt; and &lt;i&gt;&quot;Chocolate&quot; Clay&lt;/i&gt;) and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper &lt;i&gt;Fractal Metrology&lt;/i&gt; (FM). We show the usefulness of FM for complex systems analysis through a case study of the soil&apos;s physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites
    • 

    corecore