1,129 research outputs found
The development and validation of an age-structured model for the evaluation of disease control strategies for intestinal helminths
Epidemiological modelling can be a useful tool for the evaluation of parasite control strategies. An age-structured epidemiological model of intestinal helminth dynamics is developed. This model includes the explicit representation of changing worm distributions between hosts as a result of treatment, and estimates the morbidity due to heavy infections. The model is used to evaluate the effectiveness of different programmes of age-targeted community chemotherapy in reducing the amount of morbidity due to helminth infection. The magnitude of age-related heterogeneities is found to be very important in determining the results of age-targeted treatment programmes. The model was verified using field data from control programmes for Ascaris lumbricoides and Trichuris trichiura, and was found to provide accurate predictions of prevalence and mean intensities of infection during and following different control regime
Phonon softening and superconductivity in tellurium under pressure
The phonon dispersion and the electron-phonon interaction for the -Po
and the bcc high pressure phases of tellurium are computed with
density-functional perturbation theory. Our calculations reproduce and explain
the experimentally observed pressure dependence of the superconducting critical
temperature (T) and confirm the connection between the jump in
T and the structural phase transition. The phonon contribution to the
free energy is shown to be responsible for the difference in the structural
transition pressure observed in low and room temperature experiments.Comment: Revtex, 4 Postscript figures, to appear in Phys. Rev. Let
The interaction of representation and reasoning
Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group
Dislocation density and graphitization of diamond crystals
Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples
The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni
Mathematical models are potentially useful tools to aid in the design of control programmes for parasitic diseases. In this paper, a fully age structured epidemiological model of human schistosomiasis is developed and parameterized, and used to predict trends in infection prevalence, intensity and prevalence of heavy infections over age and time during several rounds of mass and age targeted treatment. The model is validated against data from a Schistosoma mansoni control programme in Keny
Comparison of structural transformations and superconductivity in compressed Sulfur and Selenium
Density-functional calculations are presented for high-pressure structural
phases of S and Se. The structural phase diagrams, phonon spectra,
electron-phonon coupling, and superconducting properties of the isovalent
elements are compared. We find that with increasing pressure, Se adopts a
sequence of ever more closely packed structures (beta-Po, bcc, fcc), while S
favors more open structures (beta-Po, simple cubic, bcc). These differences are
shown to be attributable to differences in the S and Se core states. All the
compressed phases of S and Se considered are calculated to have weak to
moderate electron-phonon coupling strengths consistent with superconducting
transition temperatures in the range of 1 to 20 K. Our results compare well
with experimental data on the beta-Po --> bcc transition pressure in Se and on
the superconducting transition temperature in beta-Po S. Further experiments
are suggested to search for the other structural phases predicted at higher
pressures and to test theoretical results on the electron-phonon interaction
and superconducting properties
Pressure-induced metallization in solid boron
Different phases of solid boron under high pressure are studied by first
principles calculations. The -B structure is found to be stable
up to 270 GPa. Its semiconductor band gap (1.72 eV) decreases continuously to
zero around 160 GPa, where the material transforms to a weak metal. The
metallicity, as measured by the density of states at the Fermi level, enhances
as the pressure is further increased. The pressure-induced metallization can be
attributed to the enhanced boron-boron interactions that cause bands overlap.
These results are consist with the recently observed metallization and the
associated superconductivity of bulk boron under high pressure (M.I.Eremets et
al, Science{\bf 293}, 272(2001)).Comment: 14 pages, 5 figure
The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains
<p>Abstract</p> <p>Background</p> <p><it>Clostridium difficile </it>is the major cause of antibiotic associated diarrhoea and in recent years its increased prevalence has been linked to the emergence of hypervirulent clones such as the PCR-ribotype 027. Characteristically, <it>C. difficile </it>infection (CDI) occurs after treatment with broad-spectrum antibiotics, which disrupt the normal gut microflora and allow <it>C. difficile </it>to flourish. One of the relatively unique features of <it>C. difficile </it>is its ability to ferment tyrosine to <it>para</it>-cresol via the intermediate <it>para</it>-hydroxyphenylacetate (<it>p-</it>HPA). <it>P</it>-cresol is a phenolic compound with bacteriostatic properties which <it>C. difficile </it>can tolerate and may provide the organism with a competitive advantage over other gut microflora, enabling it to proliferate and cause CDI. It has been proposed that the <it>hpdBCA </it>operon, rarely found in other gut microflora, encodes the enzymes responsible for the conversion of <it>p-</it>HPA to <it>p</it>-cresol.</p> <p>Results</p> <p>We show that the PCR-ribotype 027 strain R20291 quantitatively produced more <it>p</it>-cresol <it>in-vitro </it>and was significantly more tolerant to <it>p</it>-cresol than the sequenced strain 630 (PCR-ribotype 012). Tyrosine conversion to <it>p</it>-HPA was only observed under certain conditions. We constructed gene inactivation mutants in the <it>hpdBCA </it>operon in strains R20291 and 630Δ<it>erm </it>which curtails their ability to produce <it>p</it>-cresol, confirming the role of these genes in <it>p-</it>cresol production. The mutants were equally able to tolerate <it>p</it>-cresol compared to the respective parent strains, suggesting that tolerance to <it>p</it>-cresol is not linked to its production.</p> <p>Conclusions</p> <p><it>C. difficile </it>converts tyrosine to <it>p</it>-cresol, utilising the <it>hpdBCA </it>operon in <it>C. difficile </it>strains 630 and R20291. The hypervirulent strain R20291 exhibits increased production of and tolerance to <it>p-</it>cresol, which may be a contributory factor to the virulence of this strain and other hypervirulent PCR-ribotype 027 strains.</p
Electronic Transport in a Three-dimensional Network of 1-D Bismuth Quantum Wires
The resistance R of a high density network of 6 nm diameter Bi wires in
porous Vycor glass is studied in order to observe its expected semiconductor
behavior. R increases from 300 K down to 0.3 K. Below 4 K, where R varies
approximately as ln(1/T), the order-of-magnitude of the resistance rise, as
well as the behavior of the magnetoresistance are consistent with localization
and electron-electron interaction theories of a one-dimensional disordered
conductor in the presence of strong spin-orbit scattering. We show that this
behaviour and the surface-enhanced carrier density may mask the proposed
semimetal-to-semiconductor transition for quantum Bi wires.Comment: 19 pages total, 4 figures; accepted for publication in Phys. Rev.
- …