1,777 research outputs found

    Residual Entropy of the Mott Insulator with No Symmetry Broken

    Get PDF
    The half-filled ground state of the Hubbard model on the hypercubic lattice in D dimensions is studied by the Kondo-lattice theory, which is none other than the 1/D expansion theory, but within the constrained Hilbert subspace where no symmetry is allowed to be broken. A gap can open in the single-particle excitation spectrum if and only if the residual entropy or entropy at T=+0 K is nonzero. The Mott insulator with no symmetry broken, if it is possible, is characterized by nonzero residual entropy or nonzero entropy at T=+0 K. This conclusion is consistent with Brinkman and Rice's theory and the dynamical mean-field theory. According to the well-known argument based on the Bethe-ansatz solution, on the other hand, the half-filled ground state in one dimension is the Mott insulator although its residual entropy per unit cell is vanishing in the thermodynamic limit. Two possible explanations are given for the contradiction between the present paper and the well-known argument.Comment: 27 page

    Coexistence of double-Q spin density wave and multi-Q pair density wave in cuprate oxide superconductors

    Full text link
    Spatial 4a x 4a modulations, with a the lattice constant of CuO_2 planes, or the so called checkerboards can arise from double-Q spin density wave (SDW) with Q_1 = (pm pi/a, pm 3 pi/4a) and Q_2 = (pm 3 pi/4a, pm pi/a). When multi-Q pair density wave, that is, the condensation of d gamma-wave Cooper pairs with zero total momenta, pm 2Q_1, pm 2Q_2, pm 4Q_1, pm 4Q_2, and so on is induced by the SDW, gaps can have fine structures similar to those of the so called zero-temperature pseudogaps.Comment: 4 pages, 3 figure

    Frustrated electron liquids in the Hubbard model

    Get PDF
    The ground state of the Hubbard model is studied within the constrained Hilbert space where no order parameter exists. The self-energy of electrons is decomposed into the single-site and multisite self-energies. The calculation of the single-site self-energy is mapped to a problem of self-consistently determining and solving the Anderson model. When an electron reservoir is explicitly considered, it is proved that the single-site self-energy is that of a normal Fermi liquid even if the multisite self-energy is anomalous. Thus, the ground state is a normal Fermi liquid in the supreme single-site approximation (S^3A). In the strong-coupling regime, the Fermi liquid is stabilized by the Kondo effect in the S^3A and is further stabilized by the Fock-type term of the superexchange interaction or the resonating-valence-bond (RVB) mechanism beyond the S^3A. The stabilized Fermi liquid is frustrated as much as an RVB spin liquid in the Heisenberg model. It is a relevant unperturbed state that can be used to study a normal or anomalous Fermi liquid and an ordered state in the whole Hilbert space by Kondo lattice theory. Even if higher-order multisite terms than the Fock-type term are considered, the ground state cannot be a Mott insulator. It can be merely a gapless semiconductor even if the multisite self-energy is so anomalous that it is divergent at the chemical potential. A Mott insulator is only possible as a high temperature phase.Comment: 11 pages, no figur

    Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells

    Full text link
    We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting. The theory introduces a valley coupling parameter, vvv_v, which encapsulates the physics of the quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The resulting formalism provides rather simple analytical results for several geometries of interest, including a finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas. Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate. The latter may pose a numerical challenge for atomistic techniques like tight-binding, because of its two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical. We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR

    Rashba spin splitting in biased semiconductor quantum wells

    Full text link
    Rashba spin splitting (RSS) in biased semiconductor quantum wells is investigated theoretically based on the eight-band envelope function model. We find that at large wave vectors, RSS is both nonmonotonic and anisotropic as a function of in-plane wave vector, in contrast to the widely used linear and isotropic model. We derive an analytical expression for RSS, which can correctly reproduce such nonmonotonic behavior at large wave vectors. We also investigate numerically the dependence of RSS on the various band parameters and find that RSS increases with decreasing band gap and subband index, increasing valence band offset, external electric field, and well width. Our analytical expression for RSS provides a satisfactory explanation to all these features.Comment: 5 pages, 4 figures, author names corrected, submitted to Phys. Rev.

    Magnetic and charge structures in itinerant-electron magnets: Coexistence of multiple SDW and CDW

    Full text link
    A theory of Kondo lattices is applied to studying possible magnetic and charge structures of itinerant-electron antiferromagnets. Even helical spin structures can be stabilized when the nesting of the Fermi surface is not sharp and the superexchange interaction, which arises from the virtual exchange of pair excitations across the Mott-Hubbard gap, is mainly responsible for magnetic instability. Sinusoidal spin structures or spin density waves (SDW) are only stabilized when the nesting of the Fermi surface is sharp enough and a novel exchange interaction arising from that of pair excitations of quasi-particles is mainly responsible for magnetic instability. In particular, multiple SDW are stabilized when their incommensurate ordering wave-numbers ±Q\pm{\bf Q} are multiple; magnetizations of different ±Q\pm{\bf Q} components are orthogonal to each other in double and triple SDW when magnetic anisotropy is weak enough. Unless ±2Q\pm 2{\bf Q} are commensurate, charge density waves (CDW) with ±2Q\pm 2{\bf Q} coexist with SDW with ±Q\pm{\bf Q}. Because the quenching of magnetic moments by the Kondo effect depends on local numbers of electrons, the phase of CDW or electron densities is such that magnetic moments are large where the quenching is weak. It is proposed that the so called stipe order in cuprate-oxide high-temperature superconductors must be the coexisting state of double incommensurate SDW and CDW.Comment: 10 pages, no figure

    Opening of a pseudogap in a quasi-two dimensional superconductor due to critical thermal fluctuations

    Get PDF
    We examine the role of the anisotropy of superconducting critical thermal fluctuations in the opening of a pseudogap in a quasi-two dimensional superconductor such as a cuprate-oxide high-temperature superconductor. When the anisotropy between planes and their perpendicular axis is large enough and its superconducting critical temperature T_c is high enough, the fluctuations are much developed in its critical region so that lifetime widths of quasiparticles are large and the energy dependence of the selfenergy deviates from that of Landau's normal Fermi liquids. A pseudogap opens in such a critical region because quasiparticle spectra around the chemical potential are swept away due to the large lifetime widths. The pseudogap never smoothly evolves into a superconducting gap; it starts to open at a temperature higher than T_c while the superconducting gap starts to open just at T_c. When T_c is rather low but the ratio of varepsilon_G(0)/k_BT_c, with varepsilon_G(0) the superconducting gap at T=0K and k_B the Boltzmann constant, is much larger than a value about 4 according to the mean-field theory, the pseudogap must be closing as temperature T approaches to the low T_c because thermal fluctuations become less developed as T decreases. Critical thermal fluctuations cannot cause the opening of a prominent pseudogap in an almost isotropic three dimensional superconductor, even if its T_c is high.Comment: 25 pages, 5 figures (14 subfigures

    Origin and roles of a strong electron-phonon interaction in cuprate oxide superconductors

    Get PDF
    A strong electron-phonon interaction arises from the modulation of the superexchange interaction by phonons. As is studied in Phys. Rev. B 70, 184514 (2004), Cu-O bond stretching modes can be soft around (pm pi/a, 0) and (0, pm pi/a), with a the lattice constant of CuO_2 planes. In the critical region of SDW, where antiferromagnetic spin fluctuations are developed around nesting wave numbers Q of the Fermi surface, the stretching modes can also be soft around 2Q. Almost symmetric energy dependences of the 2Q component of the density of states, which are observed in the so called stripe and checker-board states, cannot be explained by CDW with 2Q following the complete softening of the 2Q modes, but they can be explained by a second-harmonic effect of SDW with Q. The strong electron-phonon interaction can play no or only a minor role in the occurrence of superconductivity.Comment: 5 pages, 1 fugur

    Spin-Valley Kondo Effect in Multi-electron Silicon Quantum Dots

    Full text link
    We study the spin-valley Kondo effect of a silicon quantum dot occupied by N% \mathcal{N} electrons, with N\mathcal{N} up to four. We show that the Kondo resonance appears in the N=1,2,3\mathcal{N}=1,2,3 Coulomb blockade regimes, but not in the N=4\mathcal{N}=4 one, in contrast to the spin-1/2 Kondo effect, which only occurs at N=\mathcal{N}= odd. Assuming large orbital level spacings, the energy states of the dot can be simply characterized by fourfold spin-valley degrees of freedom. The density of states (DOS) is obtained as a function of temperature and applied magnetic field using a finite-U equation-of-motion approach. The structure in the DOS can be detected in transport experiments. The Kondo resonance is split by the Zeeman splitting and valley splitting for double- and triple-electron Si dots, in a similar fashion to single-electron ones. The peak structure and splitting patterns are much richer for the spin-valley Kondo effect than for the pure spin Kondo effect.Comment: 8 pages, 4 figures, in PRB format. This paper is a sequel to the paper published in Phys. Rev. B 75, 195345 (2007
    corecore