40 research outputs found

    Conformal Gauge Transformations in Thermodynamics

    Full text link
    In this work we consider conformal gauge transformations of the geometric structure of thermodynamic fluctuation theory. In particular, we show that the Thermodynamic Phase Space is naturally endowed with a non-integrable connection, defined by all those processes that annihilate the Gibbs 1-form, i.e. reversible processes. Therefore the geometry of reversible processes is invariant under re-scalings, that is, it has a conformal gauge freedom. Interestingly, as a consequence of the non-integrability of the connection, its curvature is not invariant under conformal gauge transformations and, therefore, neither is the associated pseudo-Riemannian geometry. We argue that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all the elements of the geometric structure of the Thermodynamic Phase Space change under a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the Thermodynamic Phase Space which induce Weinhold's energy metric and Ruppeiner's entropy metric. As a by-product we obtain a proof of the well-known conformal relation between Weinhold's and Ruppeiner's metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors which may be of physical interest

    Two-dimensional Einstein manifolds in geometrothermodynamics

    Get PDF
    We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that -- when lying in the circumference -- describe a polytropic fluid

    Towards the topological quantization of classical mechanics

    Full text link
    We consider the method of topological quantization for conservative systems with a finite number of degrees of freedom. Maupertuis' formalism for classical mechanics provides an appropriate scenario which permit us to adapt the method of topological quantization, originally formulated for gravitational field configurations. We show that any conservative system in classical mechanics can be associated with a principal fiber bundle. As an application of topological quantization we derive expressions for the topological spectra of some simple mechanical systems and show that they reproduce the discrete behavior of the corresponding canonical spectra

    Comment on "Geometrothermodynamics of a Charged Black Hole of String Theory"

    Full text link
    We comment on the conclusions found by Larra\~naga and Mojica regarding the consistency of the Geoemtrothermodynamics programme to describe the critical behaviour of a Gibbons-Maeda-Garfinkle-Horowitz-Strominger charged black hole. We argue that making the appropriate choice of metric for the thermodynamic phase space and, most importantly, considering the homogeneity of the thermodynamic potential we obtain consistent results for such a black hole.Comment: Comment on arXiv:1012.207
    corecore