315 research outputs found

    Spreading and accumulation of river-borne sediments in the coastal ocean after the environmental disaster at the Doce River in Brazil

    Get PDF
    This study is focused on the fate of a large volume of mine slurry discharged from the Doce River (DR) to the coastal ocean after the worst environmental disaster in Brazilian which occurred in November 2015. We used Eulerian (ROMS) and Lagrangian (STRiPE) numerical models, as well as satellite remote sensing data, to study the spreading and seafloor accumulation of fine river-borne sediments during the initial six months following the disaster. We show that the regions of intense sediment accumulation were determined by spreading patterns of the surface-advected DR plume. The river discharge rate governed the plume surface area, while its position depended on local wind forcing conditions. The spreading of sediments carried by the DR plume was dominated by southward transport caused by prevailing upwelling-favorable northeasterly winds during the study period. Under high discharge conditions, river-borne sediments were transported over 100 km southward from the DR mouth and reached the outer shelf. In contrast, sediments were arrested near the mouth during drought periods and remained on the inner shelf. As a result, fine river-borne sediments accumulated on the seafloor, mainly in the large shallow shelf area southward from the DR mouth. Conversely, only a small fraction of residue was deposited northward. Thus, the Environmental Protection Area (EPA) of Costa das Algas, located 40 km southward from the DR, potentially exhibited more susceptibility to sediment arrival. On the other hand, their influence on Abrolhos Marine National Park, located 200 km northeastward from the DR mouth, was presumably minimal

    Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis

    Get PDF
    In preclinical studies rapamycin was found to target neuroinflammation, by expanding regulatory T cells, and affecting autophagy, two pillars of amyotrophic lateral sclerosis (ALS) pathogenesis. Herein we report a multicenter, randomized, double-blind trial, in 63 ALS patients who were randomly assigned in a 1:1:1 ratio to receive rapamycin 2 mg/m2/day,1 mg/m2/day or placebo (EUDRACT 2016-002399-28; NCT03359538). The primary outcome, the number of patients exhibiting an increase >30% in regulatory T cells from baseline to treatment end, was not attained. Secondary outcomes were changes from baseline of T, B, NK cell subpopulations, inflammasome mRNA expression and activation status, S6-ribosomal protein phosphorylation, neurofilaments; clinical outcome measures of disease progression; survival; safety and quality of life. Of the secondary outcomes, rapamycin decreased mRNA relative expression of the pro-inflammatory cytokine IL-18, reduced plasmatic IL-18 protein, and increased the percentage of classical monocytes and memory switched B cells, although no corrections were applied for multiple tests. In conclusion, we show that rapamycin treatment is well tolerated and provides reassuring safety findings in ALS patients, but further trials are necessary to understand the biological and clinical effects of this drug in ALS

    Rapamycin treatment for amyotrophic lateral sclerosis protocol for a phase II randomized, double-blind, placebo-controlled, multicenter, clinical trial (RAP-ALS trial)

    Get PDF
    Introduction: Misfolded aggregated proteins and neuroinflammation significantly contribute to amyotrophic lateral sclerosis (ALS) pathogenesis, hence representing therapeutic targets to modify disease expression. Rapamycin inhibits mechanistic target of Rapamycin (mTOR) pathway and enhances autophagy with demonstrated beneficial effects in neurodegeneration in cell line and animal models, improving phenotype in SQSTM1 zebrafish, in Drosophila model of ALS-TDP, and in the TDP43 mouse model, in which it reduced neuronal loss and TDP43 inclusions. Rapamycin also expands regulatory T lymphocytes (Treg) and increased Treg levels are associated with slow progression in ALS patients. Therefore, we planned a randomized clinical trial testing Rapamycin treatment in ALS patients. Methods: RAP-ALS is a phase II randomized, double-blind, placebo-controlled, multicenter (8 ALS centers in Italy), clinical trial. The primary aim is to assess whether Rapamycin administration increases Tregs number in treated patients compared with control arm. Secondary aims include the assessment of safety and tolerability of Rapamycin in patients with ALS; the minimum dosage to have Rapamycin in cerebrospinal fluid; changes in immunological (activation and homing of T, B, NK cell subpopulations) and inflammatory markers, and on mTOR downstream pathway (S6RP phosphorylation); clinical activity (ALS Functional Rating Scale-Revised, survival, forced vital capacity); and quality of life (ALSAQ40 scale). Discussion: Rapamycin potentially targets mechanisms at play in ALS (i.e., autophagy and neuroinflammation), with promising preclinical studies. It is an already approved drug, with known pharmacokinetics, already available and therefore with significant possibility of rapid translation to daily clinics. Findings will provide reliable data for further potential trials. Ethics and dissemination: The study protocol was approved by the Ethics Committee of Azienda Ospedaliero Universitaria of Modena and by the Ethics Committees of participating centers (Eudract n. 2016-002399-28) based on the Helsinki declaration

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
    • …
    corecore