35,914 research outputs found

    The large N limit of M2-branes on Lens spaces

    Full text link
    We study the matrix model for N M2-branes wrapping a Lens space L(p,1) = S^3/Z_p. This arises from localization of the partition function of the ABJM theory, and has some novel features compared with the case of a three-sphere, including a sum over flat connections and a potential that depends non-trivially on p. We study the matrix model both numerically and analytically in the large N limit, finding that a certain family of p flat connections give an equal dominant contribution. At large N we find the same eigenvalue distribution for all p, and show that the free energy is simply 1/p times the free energy on a three-sphere, in agreement with gravity dual expectations.Comment: 28 pages, 4 figure

    Matrix Models for Supersymmetric Chern-Simons Theories with an ADE Classification

    Full text link
    We consider N=3 supersymmetric Chern-Simons (CS) theories that contain product U(N) gauge groups and bifundamental matter fields. Using the matrix model of Kapustin, Willett and Yaakov, we examine the Euclidean partition function of these theories on an S^3 in the large N limit. We show that the only such CS theories for which the long range forces between the eigenvalues cancel have quivers which are in one-to-one correspondence with the simply laced affine Dynkin diagrams. As the A_n series was studied in detail before, in this paper we compute the partition function for the D_4 quiver. The D_4 example gives further evidence for a conjecture that the saddle point eigenvalue distribution is determined by the distribution of gauge invariant chiral operators. We also see that the partition function is invariant under a generalized Seiberg duality for CS theories.Comment: 20 pages, 3 figures; v2 refs added; v3 conventions in figure 3 altered, version to appear in JHE

    Interacting fermions and N=2 Chern-Simons-matter theories

    Full text link
    The partition function on the three-sphere of N=3 Chern-Simons-matter theories can be formulated in terms of an ideal Fermi gas. In this paper we show that, in theories with N=2 supersymmetry, the partition function corresponds to a gas of interacting fermions in one dimension. The large N limit is the thermodynamic limit of the gas and it can be analyzed with the Hartree and Thomas-Fermi approximations, which lead to the known large N solutions of these models. We use this interacting fermion picture to analyze in detail N=2 theories with one single node. In the case of theories with no long-range forces we incorporate exchange effects and argue that the partition function is given by an Airy function, as in N=3 theories. For the theory with g adjoint superfields and long-range forces, the Thomas-Fermi approximation leads to an integral equation which determines the large N, strongly coupled R-charge.Comment: 29 pages, 4 figure

    An E7 Surprise

    Full text link
    We explore some curious implications of Seiberg duality for an SU(2) four-dimensional gauge theory with eight chiral doublets. We argue that two copies of the theory can be deformed by an exactly marginal quartic superpotential so that they acquire an enhanced E7 flavor symmetry. We argue that a single copy of the theory can be used to define an E7-invariant superconformal boundary condition for a theory of 28 five-dimensional free hypermultiplets. Finally, we derive similar statements for three-dimensional gauge theories such as an SU(2) gauge theory with six chiral doublets or Nf=4 SQED.Comment: 27 page

    Operator Counting and Eigenvalue Distributions for 3D Supersymmetric Gauge Theories

    Full text link
    We give further support for our conjecture relating eigenvalue distributions of the Kapustin-Willett-Yaakov matrix model in the large N limit to numbers of operators in the chiral ring of the corresponding supersymmetric three-dimensional gauge theory. We show that the relation holds for non-critical R-charges and for examples with {\mathcal N}=2 instead of {\mathcal N}=3 supersymmetry where the bifundamental matter fields are nonchiral. We prove that, for non-critical R-charges, the conjecture is equivalent to a relation between the free energy of the gauge theory on a three sphere and the volume of a Sasaki manifold that is part of the moduli space of the gauge theory. We also investigate the consequences of our conjecture for chiral theories where the matrix model is not well understood.Comment: 27 pages + appendices, 5 figure

    Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC

    Get PDF
    Higgs boson production in association with a hard central photon and two forward tagging jets is expected to provide valuable information on Higgs boson couplings in a range where it is difficult to disentangle weak-boson fusion processes from large QCD backgrounds. We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak-boson fusion at a hadron collider in the form of a flexible parton-level Monte Carlo program. The QCD corrections to integrated cross sections are found to be small for experimentally relevant selection cuts, while the shape of kinematic distributions can be distorted by up to 20% in some regions of phase space. Residual scale uncertainties at next-to-leading order are at the few-percent level.Comment: 17 pages, 7 figures, 1 tabl

    Stretched Polymers in Random Environment

    Full text link
    We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.Comment: Dedicated to Erwin Bolthausen on the occasion of his 65th birthda

    Large N Free Energy of 3d N=4 SCFTs and AdS/CFT

    Get PDF
    We provide a non-trivial check of the AdS_4/CFT_3 correspondence recently proposed in arXiv:1106.4253 by verifying the GKPW relation in the large N limit. The CFT free energy is obtained from the previous works (arXiv:1105.2551, arXiv:1105.4390) on the S^3 partition function for 3-dimensional N=4 SCFT T[SU(N)]. This is matched with the computation of the type IIB action on the corresponding gravity background. We unexpectedly find that the leading behavior of the free energy at large N is 1/2 N^2 ln N. We also extend our results to richer theories and argue that 1/2 N^2 ln N is the maximal free energy at large N in this class of gauge theories.Comment: 20 pages, 3 figure

    The Large N Limit of Toric Chern-Simons Matter Theories and Their Duals

    Full text link
    We compute the large N limit of the localized three dimensional free energy of various field theories with known proposed AdS duals. We show that vector-like theories agree with the expected supergravity results, and with the conjectured F-theorem. We also check that the large N free energy is preserved by the three dimensional Seiberg duality for general classes of vector like theories. Then we analyze the behavior of the free energy of chiral-like theories by applying a new proposal. The proposal is based on the restoration of a discrete symmetry on the free energy before the extremization. We apply this procedure at strong coupling in some examples and we discuss the results. We conclude the paper by proposing an alternative geometrical expression for the free energy.Comment: 40 pages, 7 figures, using jheppub.sty, references adde
    • …
    corecore