394 research outputs found

    Effective mass in quasi two-dimensional systems

    Full text link
    The effective mass of the quasiparticle excitations in quasi two-dimensional systems is calculated analytically. It is shown that the effective mass increases sharply when the density approaches the critical one of metal-insulator transition. This suggests a Mott type of transition rather than an Anderson like transition.Comment: 3 pages 3 figure

    Conductivity in quasi two-dimensional systems

    Full text link
    The conductivity in quasi two-dimensional systems is calculated using the quantum kinetic equation. Linearizing the Lenard-Balescu collision integral with the extension to include external field dependences allows one to calculate the conductivity with diagrams beyond the GW approximation including maximally crossed lines. Consequently the weak localization correction as an interference effect appears here from the field dependence of the collision integral (the latter dependence sometimes called intra-collisional field effect). It is shown that this weak localization correction has the same origin as the Debye-Onsager relaxation effect in plasma physics. The approximation is applied to a system of quasi two-dimensional electrons in hetero-junctions which interact with charged and neutral impurities and the low temperature correction to the conductivity is calculated analytically. It turns out that the dynamical screening due to charged impurities leads to a linear temperature dependence, while the scattering from neutral impurities leads to the usual Fermi-liquid behavior. By considering an appropriate mass action law to determine the ratio of charged to neutral impurities we can describe the experimental metal-insulator transition at low temperatures as a Mott-Hubbard transition.Comment: 7 pages 7 pages appendix 11 figure

    In-medium two-nucleon properties in high electric fields

    Full text link
    The quantum mechanical two - particle problem is considered in hot dense nuclear matter under the influence of a strong electric field such as the field of the residual nucleus in heavy - ion reactions. A generalized Galitskii-Bethe-Salpeter equation is derived and solved which includes retardation and field effects. Compared with the in-medium properties in the zero-field case, bound states are turned into resonances and the scattering phase shifts are modified. Four effects are observed due to the applied field: (i) A suppression of the Pauli-blocking below nuclear matter densities, (ii) the onset of pairing occurs already at higher temperatures due to the field, (iii) a field dependent finite lifetime of deuterons and (iv) the imaginary part of the quasiparticle self-energy changes its sign for special values of density and temperatures indicating a phase instability. The latter effect may influence the fragmentation processes. The lifetime of deuterons in a strong Coulomb field is given explicitly.Comment: ps file + 7 figures (eps

    Decay estimates for variable coefficient wave equations in exterior domains

    Full text link
    In this article we consider variable coefficient, time dependent wave equations in exterior domains. We prove localized energy estimates if the domain is star-shaped and global in time Strichartz estimates if the domain is strictly convex.Comment: 15 pages. In the new version, some typos are fixed and a minor correction was made to the proof of Lemma 1

    Stability and Instability of Extreme Reissner-Nordstr\"om Black Hole Spacetimes for Linear Scalar Perturbations I

    Full text link
    We study the problem of stability and instability of extreme Reissner-Nordstrom spacetimes for linear scalar perturbations. Specifically, we consider solutions to the linear wave equation on a suitable globally hyperbolic subset of such a spacetime, arising from regular initial data prescribed on a Cauchy hypersurface crossing the future event horizon. We obtain boundedness, decay and non-decay results. Our estimates hold up to and including the horizon. The fundamental new aspect of this problem is the degeneracy of the redshift on the event horizon. Several new analytical features of degenerate horizons are also presented.Comment: 37 pages, 11 figures; published version of results contained in the first part of arXiv:1006.0283, various new results adde

    Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca)

    Get PDF
    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00114-013-1114-6) contains supplementary material, which is available to authorized users

    Quasiparticle transport equation with collision delay. II. Microscopic Theory

    Full text link
    For a system of non-interacting electrons scattered by neutral impurities, we derive a modified Boltzmann equation that includes quasiparticle and virial corrections. We start from quasiclassical transport equation for non-equilibrium Green's functions and apply limit of small scattering rates. Resulting transport equation for quasiparticles has gradient corrections to scattering integrals. These gradient corrections are rearranged into a form characteristic for virial corrections

    Exactly solvable model of three interacting particles in an external magnetic field

    Full text link
    The quantum mechanical problem of three identical particles, moving in a plane and interacting pairwise via a spring potential, is solved exactly in the presence of a magnetic field. Calculations of the pair--correlation function, mean distance and the cluster area show a quantization of these parameters. Especially the pair-correlation function exhibits a certain number of maxima given by a quantum number. We obtain Jastrow pre-factors which lead to an exchange correlation hole of liquid type, even in the presence of the attractive interaction between the identical electrons.Comment: 8 pages 3 figure

    Off shell behaviour of the in medium nucleon-nucleon cross section

    Full text link
    The properties of nucleon-nucleon scattering inside dense nuclear matter are investigated. We use the relativistic Brueckner-Hartree-Fock model to determine on-shell and half off-shell in-medium transition amplitudes and cross sections. At finite densities the on-shell cross sections are generally suppressed. This reduction is, however, less pronounced than found in previous works. In the case that the outgoing momenta are allowed to be off energy shell the amplitudes show a strong variation with momentum. This description allows to determine in-medium cross sections beyond the quasi-particle approximation accounting thereby for the finite width which nucleons acquire in the dense nuclear medium. For reasonable choices of the in-medium nuclear spectral width, i.e. Γ40\Gamma\leq 40 MeV, the resulting total cross sections are, however, reduced by not more than about 25% compared to the on-shell values. Off-shell effect are generally more pronounced at large nuclear matter densities.Comment: 31 pages Revtex, 12 figures, typos corrected, to appear in Phys. Rev.

    Bernoulli potential in type-I and weak type-II supercoductors: II. Surface dipole

    Full text link
    The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.Comment: 7 pages, 1 figur
    corecore