4,011 research outputs found

    Magnetic-Field-Induced Mott Transition in a Quasi-Two-Dimensional Organic Conductor

    Full text link
    We investigated the effect of magnetic field on the highly correlated metal near the Mott transition in the quasi-two-dimensional layered organic conductor, Îș\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, by the resistance measurements under control of temperature, pressure, and magnetic field. It was demonstrated that the marginal metallic phase near the Mott transition is susceptible to the field-induced localization transition of the first order, as was predicted theoretically. The thermodynamic consideration of the present results gives a conceptual pressure-field phase diagram of the Mott transition at low temperatures.Comment: 4 pages, 4 figure

    Field-induced staggered magnetic moment in the quasi-two-dimensional organic Mott insulator Îș\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    We investigated the magnetism under a magnetic field in the quasi-two-dimensional organic Mott insulator Îș\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl through magnetization and 13^{13}C-NMR measurements. We found that in the nominally paramagnetic phase (i.e., above N\'eel temperature) the field-induced local moments have a staggered component perpendicular to the applied field. As a result, the antiferromagnetic transition well defined at a zero field becomes crossover under a finite field. This unconventional behavior is qualitatively reproduced by the molecular-field calculation for Hamiltonian including the exchange, Dzyaloshinsky-Moriya (DM), and Zeeman interactions. This calculation also explains other unconventional magnetic features in Îș\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl reported in the literature. The present results highlight the importance of the DM interaction in field-induced magnetism in a nominally paramagnetic phase, especially in low-dimensional spin systems.Comment: 11 pages, 12 figures, selected for Editors' Suggestion

    Transport criticality of the first-order Mott transition in a quasi-two-dimensional organic conductor, Îș\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl

    Full text link
    An organic Mott insulator, Îș\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl, was investigated by resistance measurements under continuously controllable He gas pressure. The first-order Mott transition was demonstrated by observation of clear jump in the resistance variation against pressure. Its critical endpoint at 38 K is featured by vanishing of the resistive jump and critical divergence in pressure derivative of resistance, ∣1R∂R∂P∣|\frac{1}{R}\frac{\partial R}{\partial P}|, which are consistent with the prediction of the dynamical mean field theory and have phenomenological correspondence with the liquid-gas transition. The present results provide the experimental basis for physics of the Mott transition criticality.Comment: 4 pages, 5 figure

    The nonmesonic weak decay of the hypertriton

    Get PDF
    The nonmesonic decay of the hypertriton is calculated based on a hypertriton wavefunction and 3N scattering states, which are rigorous solutions of 3-body Faddeev equations using realistic NN and hyperon-nucleon interactions. The pion-exchange together with heavier meson exchanges for the ΛN→NN\Lambda N \to N N transition is considered. The total nonmesonic decay rate is found to be 0.5% of the free Λ\Lambda decay rate. Integrated as well as differential decay rates are given. The p- and n- induced decays are discussed thoroughly and it is shown that the corresponding total rates cannot be measured individually.Comment: 27 pages, 20 figures, revtex, submitted to Phys. Rev.

    Inclusive K+K^+ and exclusive K+YK^+Y photoproduction on the deuteron: Λ\Lambda- and Σ\Sigma-threshold phenomena

    Full text link
    Inclusive K+K^+ and exclusive K+YK^+Y photoproduction on the deuteron are investigated theoretically. Modern hyperon-nucleon forces and a recently updated kaon photoproduction operator for the γ+N→K++Y\gamma +N\to K^++Y process are used. Sizable effects of the hyperon-nucleon final state interaction are found near the K+ΛNK^+\Lambda N and K+ΣNK^+\Sigma N thresholds in the inclusive reaction. Angular distributions for the exclusive process show clear YNYN final state interaction effects in certain kinematic regions. Precise data especially for the inclusive process around the K+ΣNK^+\Sigma N threshold would help to clarify the strength and property of the ΛN−ΣN\Lambda N-\Sigma N interaction.Comment: 14 pages, 10 figure
    • 

    corecore