395 research outputs found

    Geometry: The leading parameter for the Poisson’s ratio of bending-dominated cellular solids

    Get PDF
    Control over the deformation behaviour that a cellular structure shows in response to imposed external forces is a requirement for the effective design of mechanical metamaterials, in particular those with negative Poisson’s ratio. This article sheds light on the old question of the relationship between geometric microstructure and mechanical response, by comparison of the deformation properties of bar-and-joint-frameworks with those of their realisation as a cellular solid made from linear-elastic material. For ordered planar tessellation models, we find a classification in terms of the number of degrees of freedom of the framework model: first, in cases where the geometry uniquely prescribes a single deformation mode of the framework model, the mechanical deformation and Poisson’s ratio of the linearly-elastic cellular solid closely follow those of the unique deformation mode; the result is a bending-dominated deformation with negligible dependence of the effective Poisson’s ratio on the underlying material’s Poisson’s ratio and small values of the effective Young’s modulus. Second, in the case of rigid structures or when geometric degeneracy prevents the bending-dominated deformation mode, the effective Poisson’s ratio is material-dependent and the Young’s modulus View the MathML sourceE˜cs large. All analysed structures of this type have positive values of the Poisson’s ratio and large values of View the MathML sourceE˜cs. Third, in the case, where the framework has multiple deformation modes, geometry alone does not suffice to determine the mechanical deformation. These results clarify the relationship between mechanical properties of a linear-elastic cellular solid and its corresponding bar-and-joint framework abstraction. They also raise the question if, in essence, auxetic behaviour is restricted to the geometry-guided class of bending-dominated structures corresponding to unique mechanisms, with inherently low values of the Young’s modulus

    Factorization of Numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses

    Full text link
    We report on the successful operation of an analogue computer designed to factor numbers. Our device relies solely on the interference of classical light and brings together the field of ultrashort laser pulses with number theory. Indeed, the frequency component of the electric field corresponding to a sequence of appropriately shaped femtosecond pulses is determined by a Gauss sum which allows us to find the factors of a number

    Homodyne detection for atmosphere channels

    Full text link
    We give a systematic theoretical description of homodyne detection in the case where both the signal and the local oscillator pass through the turbulent atmosphere. Imperfect knowledge of the local-oscillator amplitude is effectively included in a noisy density operator, leading to postprocessing noise. Alternatively, we propose a technique with monitored transmission coefficient of the atmosphere, which is free of postprocessing noise.Comment: 9 pages, 5 figure

    Conservation Laws in Higher-Order Nonlinear Optical Effects

    Full text link
    Conservation laws of the nonlinear Schr\"{o}dinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schr\"{o}dinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schr\"{o}dinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schr\"{o}dinger equation

    Optical Solitary Waves in the Higher Order Nonlinear Schrodinger Equation

    Full text link
    We study solitary wave solutions of the higher order nonlinear Schrodinger equation for the propagation of short light pulses in an optical fiber. Using a scaling transformation we reduce the equation to a two-parameter canonical form. Solitary wave (1-soliton) solutions exist provided easily met inequality constraints on the parameters in the equation are satisfied. Conditions for the existence of N-soliton solutions (N>1) are determined; when these conditions are met the equation becomes the modified KdV equation. A proper subset of these conditions meet the Painleve plausibility conditions for integrability.Comment: REVTeX, 4 pages, no figures. To appear in Phys. Rev. Let

    Multisoliton solutions and integrability aspects of coupled nonlinear Schrodinger equations

    Full text link
    Using Painleve singularity structure analysis, we show that coupled higher-order nonlinear Schrodinger (CHNLS) equations admit Painleve property. Using the results of Painleve analysis, we succeed in Hirota bilinearizing the CHNLS equations, one soliton and two soliton solutions are explictly obtained. Lax pairs are explictly constructed.Comment: Eight pages and six figures. Physical Review E (to be appear

    Toward Global Quantum Communication: Beam Wandering Preserves Nonclassicality

    Full text link
    Tap-proof long-distance quantum communication requires a deep understanding of the strong losses in transmission channels. Here we provide a rigorous treatment of the effects of beam wandering, one of the leading disturbances in atmospheric channels, on the quantum properties of light. From first principles we derive the probability distribution of the beam transmissivity, with the aim to completely characterize the quantum state of light. It turns out that beam wandering may preserve nonclassical effects, such as entanglement, quadrature and photon number squeezing, much better than a standard attenuating channel of the same losses.Comment: published versio

    Heat-Shock Protein 90 Controls the Expression of Cell-Cycle Genes by Stabilizing Metazoan-Specific Host-Cell Factor HCFC1

    No full text
    Molecular chaperones such as heat-shock proteins (HSPs) help in protein folding. Their function in the cytosol has been well studied. Notably, chaperones are also present in the nucleus, a compartment where proteins enter after completing de novo folding in the cytosol, and this raises an important question about chaperone function in the nucleus. We performed a systematic analysis of the nuclear pool of heat-shock protein 90. Three orthogonal and independent analyses led us to the core functional interactome of HSP90. Computational and biochemical analyses identify host cell factor C1 (HCFC1) as a transcriptional regulator that depends on HSP90 for its stability. HSP90 was required to maintain the expression of HCFC1-targeted cell-cycle genes. The regulatory nexus between HSP90 and the HCFC1 module identified in this study sheds light on the relevance of chaperones in the transcription of cell-cycle genes. Our study also suggests a therapeutic avenue of combining chaperone and transcription inhibitors for cancer treatment
    • …
    corecore