407 research outputs found

    An exact analytical solution for generalized growth models driven by a Markovian dichotomic noise

    Full text link
    Logistic growth models are recurrent in biology, epidemiology, market models, and neural and social networks. They find important applications in many other fields including laser modelling. In numerous realistic cases the growth rate undergoes stochastic fluctuations and we consider a growth model with a stochastic growth rate modelled via an asymmetric Markovian dichotomic noise. We find an exact analytical solution for the probability distribution providing a powerful tool with applications ranging from biology to astrophysics and laser physics

    Evidence for Strong Itinerant Spin Fluctuations in the Normal State of CeFeAsO(0.89)F(0.11) Iron-Oxypnictides

    Full text link
    The electronic structure in the normal state of CeFeAsO0.89F0.11 oxypnictide superconductors has been investigated with x-ray absorption and photoemission spectroscopy. All the data exhibit signatures of Fe d-electron itinerancy. Exchange multiplets appearing in the Fe 3s core level indicate the presence of itinerant spin fluctuations. These findings suggest that the underlying physics and the origin of superconductivity in these materials are likely to be quite different from those of the cuprate high-temperature superconductors. These materials provide opportunities for elucidating the role of magnetic fluctuations in high-temperature superconductivity.Comment: Shorter version. Accepted in Phys. Rev. Let

    Electron Tomographic Studies of Mitochondrial Crista Topology: “Swirl” Mitochondria of Drosophila Flight Muscle

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2007 in Ft. Lauderdale, Florida, USA, August 5 – August 9, 2007

    Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds

    Full text link
    We report an extensive study on the intrinsic bulk electronic structure of the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray emission spectroscopies. The complementary surface/bulk probing depth, and the elemental and chemical sensitivity of these techniques allows resolving the intrinsic electronic structure of each element and correlating it with the local structure, which has been probed by extended-x-ray absorption fine structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+) initial state configuration for Cerium and an effective valence-band-to-4f charge-transfer screening of the core hole. The spectra also reveal the presence of a small Ce f0 initial state configuration, which we assign to the occurrence of an intermediate valence state. The data reveal a reasonably good agreement with the partial density of states as obtained in standard density functional calculations over a large energy range. Implications for the electronic structure of these materials are discussed.Comment: Accepted for publication in Phys. Rev.

    Delivery Mode Shapes the Composition of the Lower Airways Microbiota in Newborns

    Get PDF
    Radical alterations in the human microbiota composition are well-known to be associated with many pathological conditions. If these aberrations are established at the time of birth, the risk of developing correlated pathologies throughout life is significantly increased. For this reason, all newborns should begin their lives with a proper microbiota in each body district. The present study aimed at demonstrating a correlation between the mode of delivery and the development of a well-balanced microbiota in the lower airways of newborns. 44 pregnant women were enrolled in this study. Microbiological comparative analysis was carried out on tracheobronchial secretions of babies born through vaginal delivery (VD) or caesarean section (CS). All samples showed the presence of bacterial DNA, regardless of the mode of delivery. No viable cultivable bacteria were isolated from the CS samples. On the contrary, VD allowed colonization of the lower airways by alive cultivable bacteria. The identification of bacterial species revealed that Lactobacillus spp. and Bacteroides vulgatus were the most common microorganisms in the lower airways of vaginally-delivered newborns. Data obtained from quantitative PCRs showed a significantly higher total bacterial load, as well as Firmicutes and Lactobacillus spp. amount, in VD samples than CS ones, while no statistically significant difference was found in Torque Teno Virus (TTV) load between samples. Taken together, our findings confirm the hypothesis that passage through the maternal vaginal canal determines more beneficial colonization of the lower airways in newborns

    Structural and functional features and significance of the physical linkage between ER and mitochondria

    Get PDF
    The role of mitochondria in cell metabolism and survival is controlled by calcium signals that are commonly transmitted at the close associations between mitochondria and endoplasmic reticulum (ER). However, the physical linkage of the ER–mitochondria interface and its relevance for cell function remains elusive. We show by electron tomography that ER and mitochondria are adjoined by tethers that are ∼10 nm at the smooth ER and ∼25 nm at the rough ER. Limited proteolysis separates ER from mitochondria, whereas expression of a short “synthetic linker” (<5 nm) leads to tightening of the associations. Although normal connections are necessary and sufficient for proper propagation of ER-derived calcium signals to the mitochondria, tightened connections, synthetic or naturally observed under apoptosis-inducing conditions, make mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected dependence of cell function and survival on the maintenance of proper spacing between the ER and mitochondria
    corecore