2,402 research outputs found

    Multi-orbital Cluster Perturbation Theory for transition metal oxides

    Get PDF
    We present an extension of Cluster Perturbation Theory to include many body correlations associated to local e-e repulsion in real materials. We show that this approach can describe the physics of complex correlated materials where different atomic species and different orbitals coexist. The prototypical case of MnO is considered

    Periodically driven interacting electrons in 1D: a many-body Floquet approach

    Full text link
    We propose a method to study the time evolution of correlated electrons driven by an harmonic perturbation. Combining Floquet formalism to include the time-dependent field and Cluster Perturbation Theory to solve the many-body problem in the presence of short-range correlations, we treat the electron double dressing - by photons and by e-e interaction - on the same footing. We apply the method to an extended Hubbard chain at half occupation and we show that in the regime of small field frequency and for given values of field strength the zero-mode Floquet band is no more gapped and the system recovers a metallic state. Our results are indicative of an omnipresent mechanism for insulator-to-metal transition in 1D systems

    Topological properties of the bond-modulated honeycomb lattice

    Get PDF
    We study the combined effects of lattice deformation, e-e interaction and spin-orbit coupling in a two-dimensional (2D) honeycomb lattice. We adopt different kinds of hopping modulation--generalized dimerization and a Kekule distortion--and calculate topological invariants for the non-interacting system and for the interacting system. We identify the parameter range (Hubbard U, hopping modulation, spin-orbit coupling) where the 2D system behaves as a trivial insulator or Quantum Spin Hall Insulator.Comment: 8 pages, 4 figures: discussion improved, typos corrected, references updated. Matches version published in PR

    Topological invariants in interacting Quantum Spin Hall: a Cluster Perturbation Theory approach

    Get PDF
    Using Cluster Perturbation Theory we calculate Green's functions, quasi-particle energies and topological invariants for interacting electrons on a 2-D honeycomb lattice, with intrinsic spin-orbit coupling and on-site e-e interaction. This allows to define the parameter range (Hubbard U vs spin-orbit coupling) where the 2D system behaves as a trivial insulator or Quantum Spin Hall insulator. This behavior is confirmed by the existence of gapless quasi-particle states in honeycomb ribbons. We have discussed the importance of the cluster symmetry and the effects of the lack of full translation symmetry typical of CPT and of most Quantum Cluster approaches. Comments on the limits of applicability of the method are also provided.Comment: 7 pages, 7 figures: discussion improved, one figure added, references updated. Matches version published in New J. Phy

    The associated production of t¯tH in ATLAS

    Get PDF
    Since its discovery in July 2012, it has become mandatory to study the couplings of the Higgs boson with other Standard Model particles. The associated production of Higgs and top-antitop pairs (t¯tH) gives direct access to the Higgs-top couplings. Due to the different decay modes of the t¯t pairs and of the Higgs boson, the process displays a large variety of decay channels involving in the final state, b¯b pairs, γγ and multileptonic (including τ ) states. Although the sensitivity is still limited by the Run I statistics, the assessment of the analysis methods will be essential for constraining the t-H coupling using the data collected from 2015 at ATLAS at LHC. These include background estimation, selection optimization and systematics control

    Reentrant metallicity in the Hubbard model: the case of honeycomb nanoribbons

    Get PDF
    Based on the cluster perturbation solution of the Hubbard Hamiltonian for a 2D honeycomb lattice, we present quasi-particle band structures of nanoribbons at half filling as a function of on-site electron-electron (e-e) repulsion. We show that, at moderate values of e-e interaction, ribbons with armchair-shaped edges exhibit an unexpected semimetallic behavior, recovering the original insulating character only at larger values of U

    Self-consistent Green function approach for calculations of electronic structure in transition metals

    Full text link
    We present an approach for self-consistent calculations of the many-body Green function in transition metals. The distinguishing feature of our approach is the use of the one-site approximation and the self-consistent quasiparticle wave function basis set, obtained from the solution of the Schrodinger equation with a nonlocal potential. We analyze several sets of skeleton diagrams as generating functionals for the Green function self-energy, including GW and fluctuating exchange sets. Their relative contribution to the electronic structure in 3d-metals was identified. Calculations for Fe and Ni revealed stronger energy dependence of the effective interaction and self-energy of the d-electrons near the Fermi level compared to s and p electron states. Reasonable agreement with experimental results is obtained

    Photo-excitation of a light-harvesting supra-molecular triad: a Time-Dependent DFT study

    Full text link
    We present the first time-dependent density-functional theory (TDDFT) calculation on a light harvesting triad carotenoid-diaryl-porphyrin-C60. Besides the numerical challenge that the ab initio study of the electronic structure of such a large system presents, we show that TDDFT is able to provide an accurate description of the excited state properties of the system. In particular we calculate the photo-absorption spectrum of the supra-molecular assembly, and we provide an interpretation of the photo-excitation mechanism in terms of the properties of the component moieties. The spectrum is in good agreement with experimental data, and provides useful insight on the photo-induced charge transfer mechanism which characterizes the system.Comment: Accepted for publication on JPC, March 09th 200

    First principle theory of correlated transport through nano-junctions

    Get PDF
    We report the inclusion of electron-electron correlation in the calculation of transport properties within an ab initio scheme. A key step is the reformulation of Landauer's approach in terms of an effective transmittance for the interacting electron system. We apply this framework to analyze the effect of short range interactions on Pt atomic wires and discuss the coherent and incoherent correction to the mean-field approach.Comment: 5 pages, 3 figure
    • …
    corecore