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Based on the Cluster Perturbation solution of the Hubbard hamiltonian for a 2-D honeycomb
lattice we present quasiparticle band structures of nanoribbons at half filling as a function of the
on-site electron-electron repulsion. We show that, at moderate values of e-e interaction, ribbons
with armchair-shaped edges exhibit an unexpected semimetallic behavior, recovering the original
insulating character only at larger values of U .
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The effect of the many-body interaction in the elec-
tronic properties of materials has been one of the most
important topics in solid state research over the last
decades. Even if in many systems electrons behave as
independent (quasi)particles and can be successfully de-
scribed by standard band theory, the interpretation of the
electronic properties of a wide class of materials requires
improvements over the single particle approximation. In
these cases the repulsive interaction among electrons is
responsible of the failure of single particle picture and
of the opening/widening of energy gaps. The Hubbard
model is the paradigm to describe this phenomenon: suf-
ficiently large values of the on-site e-e repulsion inhibit
the inter-site hopping favoring in this way an insulat-
ing behaviour. The 1-atom thick 2D honeycomb lattice
(graphene) does not contradict this picture: many body
effects due to on-site Coulomb repulsion have been shown
to lead, for sufficiently strong interactions, to semimetal-
to-insulator transition1,2 as well as to other deviations
from Fermi-liquid behavior such as unconventional quasi-
particle lifetimes3, long-range antiferromagnetic order4
and spin liquid phase5.

In this paper we show that for honeycomb nanorib-
bons the repulsive e-e interaction may be responsible of
a metallic phase in ribbons that in the single particle
picture are semiconducting. This appears to be another
extraordinary property of the honeycomb lattice.

It is well known that honeycomb nanoribbons mani-
fest peculiar properties related to the topology of their
edges6: according to single-particle theory ribbons with
armchair shaped edges may exhibit a finite energy gap
depending on their width7–9, while ribbons with zigzag
edges are metallic and become insulating only after the
inclusion of an antiferromagnetic order10,11. The modi-
fications of the single particle band structure of zigzag
graphene ribbons due to e-e interaction has been in-
vestigated within a mean field solution of the Hubbard
model12,13, showing spin polarization of edge states and
gap opening at the Fermi level. The effects of long-range
Coulomb interactions on the electronic states of zigzag
and armchair ribbons have been studied by bosonization
techniques14,15. How the single particle band picture
evolves to a quasi-particle one and how the electronic
states of both armchair and zigzag honeycomb ribbons

are modified by short-range on-site Coulomb repulsion
described as a true many body term is the question we
address in this paper.

The possibility that e-e correlation can cause a metal-
lic behavior in band insulators has been rather contro-
versial and only recently Dynamical Mean Field Theory
(DMFT)16,17 and Quantum Monte Carlo18 approaches
have been applied to study model band insulators show-
ing that the band gap may be suppressed by e-e repulsion.
Here we address this issue in a specific class of systems
- honeycomb ribbons - that in the absence of correlation
may exhibit either metallic or semiconducting behavior
depending on their edge topology. This seems an ideal
situation to study how e-e repulsion may - ceteris paribus
- either open or suppress a gap.

We have adopted a many body approach based on the
Cluster Perturbation Theory19 (CPT). CPT belongs to
the class of Quantum Cluster theories20,21 that solve the
problem of many interacting electrons in an extended
lattice by a divide-and-conquer strategy, namely solv-
ing first the many body problem in a subsystem of finite
size and then embedding it within the infinite medium.
Quantum Cluster theories represent some of the most
powerful tools for the numerical investigation of strongly
correlated many-body systems. They include Dynami-
cal Cluster Approach22, Cellular Dynamical Mean Field
Theory23 as well as CPT and have found an unified lan-
guage within the variational scheme24 based on the the
Self Energy Functional approach25. CPT has many in-
teresting characteristics and gives access to non trivial
many body effects in a relatively simple way: it exactly
reproduces the limits U/t = 0 (non-interacting band
limit), U/t = ∞ (atomic limit); for intermediate val-
ues of U/t it opens a gap in metallic systems at half
occupation26 and it recovers most of the characteristics
of the exact solution of the 1-dimensional case19,27; fi-
nally it is relatively easy to implement and, at least for
simplest systems, without much numerical effort. In its
variational form24,28 (Variational Cluster Approximation
(VCA) ) it can be applied to systems with spontaneously
broken symmetry describing antiferromagnetism29 and
superconductivity30,31. In zigzag honeycomb ribbons
VCA has been applied to study the transition from topo-
logical to antiferromagnetic insulator32. CPT shares the
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strategy of cluster embedding with other approaches that
have been developed to study transport in nanoscopic
structures33–36 or the metal-insulator transition of the
Hubbard model37.

I. CPT FOR HONEYCOMB RIBBONS

In CPT19 the lattice is seen as the periodic repeti-
tion of identical clusters and the Hubbard Hamiltonian
is written as the sum of two terms, an intra-cluster (Ĥc)
and an inter-cluster one (V̂ )

Ĥ =
∑

l

Ĥl +
∑

l 6=l′

Ĥll′ = Ĥc + V̂ (1)

where the summations are over all the clusters and

Ĥl = −t
∑

ijσ

ĉ†ilσ ĉjlσ + U
∑

i

ĉ†il↑ĉil↑ĉ
†
il↓ĉil↓

Ĥll′ = −t
∑

ijσ

ĉ†ilσ ĉjl′σ

Since in the Hubbard model the e-e Coulomb interac-
tion is on-site, the inter-cluster hamiltonian V̂ is single
particle and the many body term is present in the intra-
cluster hamiltonian Ĥc only, a key feature for the prac-
tical implementation of the method. Having partitioned
the Hamiltonian in this way we may write the resolvent
operator Ĝ as Ĝ−1 = z − Ĥc − V̂ = Ĝc

−1
− V̂ and from

this

Ĝ = Ĝc + ĜcV̂ Ĝ (2)

The one-particle propagator

G(knω) = 〈Ψ0|ĉ†knĜĉkn|Ψ0〉
+ 〈Ψ0|ĉknĜĉ†kn|Ψ0〉

is obtained exploiting the transformation from localized
to Bloch basis

ĉ†kn =
1√
N

∑

il

αn
i (k)∗e−ik·(Rl+τi)ĉ†il (3)

and similarly for ĉkn. Here αn
i (k) are the eigenstate coef-

ficients obtained by a band calculation for a superlattice
of L identical clusters, identified by the lattice vectors Rl,
each cluster containing M sites at positions τi; n is the
band index and the summation is over the N = L × M
lattice sites. We get

G(knω) =
1
M

∑

ii′

e−ik·(τi−τi′ )|αn
i (k)|2Gii′ (kω) (4)

where Gii′ (kω) is the superlattice Green function, namely
the Fourier transform of the Green function in local basis

Gii′ (kω) =
1
L

∑

ll′

e−ik·(Rl−Rl′ )Gll′

ii′ (ω) (5)

This is the quantity that can be calculated by eq.2

Gii′ (kω) = Gc
ii′ (ω) +

∑

j

Bij(kω)Gji′ (kω) (6)

where M ×M matrix Bij(kω) is the Fourier transform of
ĜcV̂ involving neighboring sites that belong to different
clusters. Once the cluster Green function in the local
basis Gc

ii′ (ω) has been obtained by exact diagonalization,
eq. 6 is solved quite simply by a M ×M matrix inversion
at each k and ω. The quasi particle spectrum is then
obtained in terms of spectral function A(kω)

A(kω) = − 1
π

∑

n

ImG(knω). (7)

The key approximation in this derivation is the expres-
sion of the complete Green function in terms of Green
functions of decoupled clusters and it is important to
verify the accuracy of the results by using larger and
larger cluster sizes. In practice this procedure is limited
by the dimensions of Hilbert space used in the exact di-
agonalization, dimensions that grow exponentially with
the number of sites.

FIG. 1: (Color online) Geometric configurations of honey-
comb ribbons with zigzag edges identified according to the
notation of reference8. The single (a,c) and double (b) chains
used to tile the extended 1D lattice are also shown.

Fig. 1 illustrates the ribbon geometries and the clus-
ters that are periodically repeated to reproduce both
zigzag and armchair ribbons. We want to stress that
CPT allows to reproduce the full periodicity of the sys-
tem of interest and that the ribbons we are describing
are extended 1D systems. For the armchair termination
in particular we will restrict our analysis to ribbons of
small width that in the single particle picture exhibit a
large band gap (the band gap in armchair ribbons de-
creases with width) and as such are the best candidates
to manifest the effect we are looking for, namely a band
gap suppression induced by e-e repulsion.
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II. RESULTS FOR ZIG-ZAG AND ARMCHAIR
RIBBONS

In the case of zigzag termination we have considered
two different widths and in the case of ribbon 〈1.0〉 we
have used both single chain (4 sites) and double chain
(8 sites) tilings in order to test the influence of cluster
size on the quasiparticle spectrum. In Fig. 2 we show
the QP Density Of States (DOS) obtained for a specific
value of U/t and the two above mentioned cluster sizes,
compared with the corresponding non-interacting DOS.
We notice that the main features (peak positions, gap
opening) do not depend much on the cluster size. We
may therefore confidently use the smallest cluster size in
all cases. For armchair terminated ribbons we have used
two different kinds of clusters: an 8-site chain (Fig. 1
(e)) and an hexagon with two legs (Fig. 1 (f)). As we
will show below the cluster shape does not modify the
overall picture.

FIG. 2: (Color online) Density of Quasi Particle states ob-
tained for U/t = 4 for a zigzag terminated ribbon assum-
ing different cluster sizes (Fig 1 a,b) compared with non-
interacting DOS.

As a result of the inclusion of e-e interaction extra
structures appear in the quasi particle spectrum be-
low (above) filled (empty); this is what happens also
in real materials where Hubbard correlation may be re-
sponsible of severe energy renormalization, quasiparticle
quenching38,39 and the appearance of short lived satel-
lites structures40. The main effect of Hubbard correla-
tion however is the opening, for sufficiently strong inter-
action U ≥ Uc, of a well defined gap. This is due to
the well known Mott-Hubbard mechanism: U inhibits
double occupancies of sites and in this way makes elec-
tron hopping from site to site less and less energetically
favorable, driving the system across a metal-to-insulator
transition. This is what happens in model systems at half
occupation and in real materials41. As shown in Fig. 3
the value of Uc for zigzag ribbons depends on the ribbon
width: Uc ' 1., 1.52. for ribbons 〈1.0〉, 〈2.0〉, 〈3.0〉 re-
spectively. Previous VCA calculations32 have found for
wider ribbons Uc ≈ 3t, a results not too far from the
present one taking into account the larger ribbon width
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FIG. 3: (Color online) Value of the energy gap as a function
of U/t showing a drastically different behavior in zigzag and
armchair ribbons. For zigzag termination results obtained for
different cluster sizes (single and double chain, Fig. 1 (a) and
(b) ) and for different ribbon widths are shown.

and the variational procedure used in that work. Re-
cent ab-initio estimate of the screened on-site Coulomb
interaction in graphene42 provides values of the the same
order (U/t ∼ 3.5).

For the armchair terminated ribbons the situation is
completely different. As previously mentioned, according
to single particle theory ribbons with armchair shaped
edges may be metallic or insulating depending on their
width7–9. In particular the ribbon of interest here ex-
hibits a finite gap in the non-interacting picture and we
may expect the one-site e-e interaction to reinforce this
insulating behavior enlarging the gap. This, surprisingly
enough, is not quite the case: switching on e-e correla-
tion the gap first diminishes, reaches zero at U/t = 3,
and only after that grows linearly with U/t (Fig. 3 ). At
U = Uc the QP band dispersion (Fig. 4) becomes linear
around k = 0 and the system semimetallic.

Fig. 3 and 4 report the results obtained for armchair
ribbons assuming the tiling showed in Fig. 1 (e). These
results are not significantly affected by the shape of the
cluster: adopting cluster (f) of Fig. 1 the curve describ-
ing the behaviour of the gap versus U/t (Fig. 5) main-
tains the same remarkable characteristics, with a slightly
different critical value Uc. Also the QP band dispersions
obtained at the respective UC , (Fig.4 (c) and inset of Fig.
5) are quite similar.

We may look at the character of quasiparticle states
by considering the local spectral function, namely
A(k, i, ω) = − 1

π

∑
n ImG(knω) | αn

i (k) |2 reported in
Fig. 6. We notice that the effect of e-e repulsion is to
delocalize states close to the gap region that for U/t = 0
are localized either at the edges or in the inner part of
the ribbon. In particular for U/t = 3 the localization of
gapless states responsible of the semimetallic behavior is
equally distributed across the ribbon.

We have found that it is possible to reproduce the same
gapless band dispersion with the same delocalized char-
acter in a single particle picture attributing different hop-
ping terms to edge sites and to inner ones: this is shown
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FIG. 4: (Color online) Quasiparticle band structure for
armchair terminated ribbon 〈1.1〉 obtained with U/t = 0
(a),U/t = 2 (b),U/t = 3 (c), U/t = 4(d). The black line
superimposed in (c) is the band structure obtained in the
single particle picture assuming different hopping terms (see
text).

FIG. 5: (Color online) Value of the energy gap as a function of
U/t for ribbon 〈1.1〉 obtained with cluster (f) of Fig. 1. The
quasiparticle band structure at the critical value Uc/t = 2.3
is shown in the inset.

in Fig. 4(c) where we plot the single particle band struc-
ture obtained assuming hopping between edge states ex-
actly twice as big as hopping between inner ones. In this
sense the net effect of the on-site e-e repulsion is to renor-
malize the inter-site hopping selectively across the ribbon
and to make hopping between doubly coordinated sites
(edge sites) more favorable than hopping between sites
with triple coordination (inner sites). The gap closing
would then be due to a mechanism similar to a mechan-
ical strain. The analogy between mechanical strain, e-e
repulsion and magnetic field as responsible of gap tun-
ing in graphene has been recently investigated43,44 show-
ing in particular that in the mean field approximation a

FIG. 6: (Color online) Local spectral functions (see text) for
ribbon 〈1.1〉. Top (bottom) panels report the results for U/t =
0 (U/t = 3); panels (a) and (c) describe the contribution of
edge sites (site 1 and 2 of Fig(1) while panels (b), ((d) describe
the contribution of innermost sites (site 3 and 4 of Fig. 1).

local nearest neighbor Coulomb interaction may create
in a 2D honeycomb lattice non trivial magnetic config-
urations and metallic phases with broken time reversal
symmetry44. In the present study we have shown that
on-site Coulomb repulsion if treated as a full many body
term may induce a semimetallic behavior in a semicon-
ducting 1D honeycomb lattice.

What is surprising is that the Hubbard interaction has
opposite effects in the two types of honeycomb ribbons:
it opens a gap in the metallic ribbon and closes it in
the semiconducting one. A similar behavior has been re-
ported in a recent paper on correlation effects in topolog-
ical insulators32. Starting from an extended 2D honey-
comb lattice made semiconducting by intrinsic spin-orbit
(SO) interaction within the so-called Kane-Mele model45,
the authors show that for U/t = 3 the existing gap closes
down. We have repeated the calculation using the same
SO parameter and calculated also in this case the gap as a
function of U/t. The results are shown in Fig. 7 for a 2D
honeycomb lattice with and without SO and again in the
semiconducting system we find a regime of U/t where
the energy separation between filled and empty states
decreases and the pre-existing gap closes down to zero.
And this even if the original semiconducting behavior has
a completely different physical origin (SO interaction in
2D instead of armchair termination in 1D).

III. CONCLUSIONS

We have calculated the QP band structure of hon-
eycomb nanoribbons solving the Hubbard Hamiltonian
within the Cluster Perturbation Tehory. We have found
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FIG. 7: (Color online) Energy gap as a function of U/t for
2D honeycomb lattice with (circles) and without spin-orbit
(diamonds) interaction.

that many body effects associated to local e-e repulsion
may be responsible of a (semi)metallic phase in systems
with honeycomb lattice. The Hubbard mechanism that
inhibits double occupancies of sites, instead of reducing
the ability of electrons to jump from site to site, induces
a selective renormalization of inter-site hopping and the
energy separation between filled and empty states be-
comes zero at a specific k-point. This behavior appears
to be characteristic of honeycomb topology - or per-
haps more generally of bipartite lattices - at half occu-
pation and suggests the existence of an U -dependent ad-
ditional symmetry46. Electrons trapped in artificial lat-
tices with honeycomb geometry47 are the best candidates
where this anomalous behavior induced by e-e repulsion
(gap closing/opening for semiconducting/metallic sys-
tems) can be experimentally verified.
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M. I. Katsnelson, and S. Blügel, Phys. Rev. Lett. 106,
236805 (2011), URL http://link.aps.org/doi/10.1103/

PhysRevLett.106.236805.
43 F. Guinea, K. M. I., and G. A. K., Nature Phys. 6, 30

(2010).
44 E. V. Castro, A. G. Grushin, B. Valenzuela, M. A. H.

Vozmediano, A. Cortijo, and F. de Juan, Phys. Rev. Lett.
107, 106402 (2011), URL http://link.aps.org/doi/10.

1103/PhysRevLett.107.106402.
45 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82,

3045 (2010), URL http://link.aps.org/doi/10.1103/

RevModPhys.82.3045.
46 E. H. Lieb (1993), http://arxiv.org/abs/cond-

mat/9311033.
47 A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini,

G. Vignale, M. I. Katsnelson, A. Pinczuk, L. Pfeiffer,
K. West, et al., Science 332, 1176 (2011).


	Contents of main.tex
	Go to page 1 of 6
	Go to page 2 of 6
	Go to page 3 of 6
	Go to page 4 of 6
	Go to page 5 of 6
	Go to page 6 of 6


