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Topological properties of the bond-modulated honeycomb lattice
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We study the combined effects of lattice deformation, e-e interaction, and spin-orbit coupling in a two-
dimensional (2D) honeycomb lattice. We adopt different kinds of hopping modulation—generalized dimerization
and a Kekulé distortion—and calculate topological invariants for the noninteracting system and for the interacting
system. We identify the parameter range (Hubbard U , hopping modulation, spin-orbit coupling) where the 2D
system behaves as a trivial insulator or quantum spin Hall insulator.
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I. INTRODUCTION

The study of novel topological phases of matter is an
extremely active research field [1–3]. Quantum spin Hall
insulators (QSHI) are a remarkable example of topology
at work; in these two-dimensional insulating systems the
nondissipative spin current carried by gapless edge states
owes its robustness to the topology of bulk bands described
by the nonzero value of the Z2 topological invariant. The
two-dimensional graphenelike lattice with intrinsic spin-orbit
coupling has been identified as a paradigmatic example of
QSHI [4–6]. The spin-orbit helical interaction, described by
a nearest-neighbor spin-dependent complex hopping, opens a
gap in the otherwise linear spectrum of the honeycomb lattice
and at the same time induces a metallic behavior on the edges.

A band gap opening, the conditio sine qua non for the
emergence of topological features, can be achieved—at least
conceptually—in different ways, not all of them with the
same topological consequences. A gapped phase on the
honeycomb lattice may be induced by modulating the tight-
binding hopping amplitudes to describe different kinds of
bond dimerization or by including many-body e-e interac-
tions. The interplay between these three types of “gapping”
interactions—spin-orbit couplings, hopping modulation, and
on-site e-e interaction—has been recently studied assuming
the bond dimerization that can be associated to uniaxial
strain [7]. Another interesting hopping modulation is the one
leading to a Kekulé distortion where stronger and weaker
nearest-neighbor links alternate on the honeycomb lattice in a√

3 × √
3 arrangement. This structure turns out to be stable in

the presence of nearest-neighbor and next-to-nearest-neighbor
e-e interactions [8,9] resulting, at the mean field level, in an
effective bond dimerization of a Kekulé type.

In this work, we explore the combined effects of spin-orbit
couplings, hopping modulation, and on-site e-e interaction. We
superimpose different kinds of hopping modulation on a Kane-
Mele-Hubbard model [10–13] describing a two-dimensional
honeycomb lattice in the presence of both spin-orbit coupling
and local e-e interaction, and we identify the topological
properties of this interacting system in terms of topological
invariants. This will be done by solving the many-body prob-
lem within cluster perturbation theory (CPT) and extracting

topological invariants from the many-body Green’s function.
The goal is to clarify how the topological phases that stem from
the intrinsic spin-orbit coupling are modified by different kinds
of hopping texturing and by e-e interaction.

The paper is organized as follows: in Sec. II we consider
noninteracting electrons in the presence of intrinsic spin-orbit
coupling and different kinds of hopping modulation; Sec. III
extends the results to the interacting case, and the last section
is devoted to discussion and conclusions.

II. SINGLE-PARTICLE DESCRIPTION

In the present section we consider a honeycomb model
of noninteracting electrons represented by a single particle
Hamiltonian with a spin-dependent hopping term

Ĥ =
∑

il,i ′l′s

til,i ′l′(s)ĉ†ils ĉi ′l′s . (1)

Here i,i ′ run over the atomic positions within the unit cell,
l,l′ refer to lattice vectors identifying the unit cells of the
lattice, and s = 1,2 is for spin up and down. ĉ

†
ils and ĉils

are respectively the electron creation and electron annihilation
operators. The hopping term til,i ′l′(s) includes both the first-
neighbor spin-independent hopping and the Haldane-Kane-
Mele second-neighbor spin-orbit coupling [4,14] given by
ıtKMsz(d1 × d2)z, where d1 and d2 are unit vectors along
the two bonds that connect site il with site i ′l′, and sz

is the unit vector in the direction orthogonal to the lattice
plane. This Hamiltonian preserves time-reversal symmetry
and parity symmetry. In turn, this implies that—by Kramer’s
theorem—states come in time-reversal pairs and the Chern
number computed from the bulk occupied bands identically
vanishes, and so does the charge conductivity. However the
spin conductivity may be nonvanishing as it depends upon the
difference between the two spin-filtered Chern numbers [4].

We start by considering the modulation in the hopping
amplitudes among nearest-neighboring sites that may arise
as a consequence of a nonuniform shear strain. As shown
in Ref. [15] this corresponds to different values for the
three nearest-neighbor hopping parameters [Fig. 1(a)]. Since
the system has time-reversal and inversion symmetry we
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FIG. 1. (Color online) Geometry of the two-dimensional (2D)
honeycomb lattice with different hopping textures: (a) generalized
dimerization with different nearest-neighbor hopping parameters;
(b) Kekulé distortion. The unit cells in the two cases, containing
two and six atoms, respectively, are also shown. Different values of
second-neighbor interactions are indicated.

may identify the topological character of the system through
the Z2 parity invariant defined as the exponent � in the
expression [6]

(−1)� =
∏

TRIM

N∏
n=1

ηn(�i). (2)

where ηn(�i) = ±1 are the parity eigenvalues of the occupied
bands for any of the two spin sectors, calculated at time-
reversal invariant momenta (TRIM), and �i is defined by the
condition that −�i = �i + G withG a reciprocal lattice vector.
The value of the Z2 topological invariant distinguishes trivial
insulators (� = 0, mod 2) from topological QSH insulators
(� = 1, mod 2).

The eigenvalues and eigenvectors for the honeycomb lattice
as well as the parity eigenvalues at TRIM points can be easily
calculated analytically in terms and hopping parameters by
solving the 2 × 2 secular problem; we obtain

η1(�1) = 1,

η1(�2) = sign[t1 + (t2 − t3)],

η1(�3) = sign[t1 − (t2 − t3)],

η1(�4) = sign[t1 − (t2 + t3)],

where the ti are the three (generically different) hopping
parameters. For the Z2 invariant we thus have

(−1)� = sign [t1 − (t2 + t3)] sign
[
t2
1 − (t2 − t3)2

]
. (3)

Interestingly, these quantities depend just on first nearest-
neighbor hopping parameters and not on second nearest-
neighbor hoppings describing spin-orbit interaction. This is
a direct consequence of symmetry: each site in the unit cell is
connected to three pairs of second nearest neighbors sharing
the same distance but placed in opposite directions (sites 1-2,
3-4, and 5-6 in Fig. 1). For this reason the Hamiltonian matrix
H (k) at any TRIM point does not depend on Haldane-Kane-
Mele second-neighbor spin-orbit coupling. We have in fact

H (k) =
(

g(k) −f (k)

−f (k)∗ −g(k)

)
,

where

g(k) = 2[tKMsin(ky)

− t ′KMsin(kx

√
3/2 + ky/2)

− t ′′KMsin(−kx

√
3/2 + ky/2)],

f (k) = t1exp(ıkx/
√

3) + exp[−ıkx/(2
√

3)]

× [t2 exp(−ıky/2) + t3 exp(ıky/2)].

It is then easy to check that g(k) at any TRIM point is
identically zero. Still, the spin-orbit interaction is essential in
order to obtain a nontrivial topological behavior: for tKM = 0 a
modulation in the hopping parameters would only transform a
semimetal into a trivial insulator while for tKM �= 0 the system
is always an insulator (except just at the phase boundary—see
below). For tKM �= 0, by tuning the hopping parameters ti
we may go from a trivial insulating phase to a topological
quantum spin Hall insulating regime. The values where a phase
transition occurs—either between QSHI and topologically
trivial insulator (TTI) for tKM �= 0 or between semimetal and
TTI for tKM = 0—are identical and the phase diagram that we
obtain [Fig. 2(a)] coincides, as far as the phase separations are
concerned, with the one reported in Refs. [15,16] for tKM = 0.
We observe that right at the transition between QSHI and TTI
phases the single particle gap �sp closes down and the system
recovers a semimetallic behavior. We analyze in particular the
behavior of the system varying just one hopping parameter (t2)
with tKM = t ′KM = t ′′KM , moving in the parameter space along
the line shown in Fig. 2(a) where t3 = t1. For this choice of
parameters the gap between filled and empty states evolves as
shown in Fig. 2(b). Before the transition, the absolute value
of the energy gap depends on tKM but after the transition
it becomes independent on tKM and increases linearly as
Eg = 2 (t2 − 2t1).

In the lower panel of Fig. 2 we show the evolution of the
band structure assuming tKM = t ′KM = t ′′KM and tKM/t1 = 0.1
along the line in parameter space where t1 = t3. By increasing
the value of t2 the positions in k space of the band gap move
along a line parallel to ky = 1√

3
kx and merge at M points where

the gap closes down for t2/t1 = 2, signaling the topological
transition from QSHI to TTI. We stress again that the spin-orbit
term, even including a modulation in second-neighbor hopping
interaction, does not alter the parity symmetry (C2) and as such
it does not affect the gap position in k space. After the transition
the gap remains at M.

We turn now to the Kekulé distortion. In this case the unit
cell contains six atoms, with alternating values in the nearest-
neighbor hopping parameters t and t ′ as shown in Fig. 1(b). In
principle we have two possible values of the second nearest-
neighbor parameters; since their dependence on the lattice
deformation is not easy to assess we have considered two
separate cases, namely, t ′KM = tKM and t ′KM = t ′/t × tKM as
suggested in Ref. [17].

Neglecting at first the variation in the second nearest-
neighbor hopping parameters we notice that the minimum
separation between filled and empty states is, for any value of
t ′/t and tKM/t , pinned at a � point. This is shown in the lower
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FIG. 2. (Color online) Upper panel: (a) Phase diagram for Kane-Mele model of the honeycomb lattice assuming the generalized bond
dimerization of Fig. 1(a). The two phases, QSHI and TTI, correspond to different values of the Z2 invariant (� = 1 and � = 0, respectively;
see text). (b) Gap value as a function of the hopping parameter t2 assuming t1 = t3 = 1,tKM = t ′

KM = t ′′
KM . Continuous line is for tKM/t1 = 0.1,

dotted line for tKM/t1 = 0.3. Lower panel: Density plots of the occupied energy states as a function of k point with tKM = 0.1. The evolution
of the band structure is considered for tKM = t ′

KM = t ′′
KM in a subset of first nearest-neighbor hopping parameters with t1 = t3 = 1 indicated as

blue dots in panel (a): t2 = 1 (c), t2 = 1.2 (d), t2 = 2 (e), t2 = 3(f ). In the color scale, red indicates zero gap. Brillouin zones (thin red dotted
lines) and high symmetry points are also shown.

panel of Fig. 3 where the dispersion of the highest occupied
band is shown for different values of t ′/t and for tKM/t = 0.1.
This remains true also for t ′KM �= tKM . We may then identify
the analytic dependence of the Z2 invariant on the hopping
parameters by considering the eigenvalues at the � point only,
where the diagonalization of the 6 × 6 Hamiltonian matrix is
trivial, and look for the conditions that guarantee a zero gap be-
tween filled and empty states. Indeed in the noninteracting case
the transition from a trivial to a nontrivial topological phase
requires the gap to close down. The six eigenvalues at � [e1 =
−t − 2t ′, e2 = t + 2t ′, e3 = t − t ′ − √

3(tKM + 2t ′KM ), e4 =
−t + t ′ − √

3(tKM + 2t ′KM ), e5 = t − t ′ + √
3(tKM + 2t ′KM ),

e6 = −t + t ′ + √
3(tKM + 2t ′KM )] are easily obtained from

the Hamiltonian matrix

H↑(�) =

⎛
⎜⎜⎜⎜⎜⎝

0 −t ′ m −t m∗ −t ′
−t ′ 0 −t ′ m −t m∗
m∗ −t ′ 0 −t ′ m −t

−t m∗ −t ′ 0 −t ′ m

m −t m∗ −t ′ 0 −t ′
−t ′ m −t m∗ −t ′ 0

⎞
⎟⎟⎟⎟⎟⎠ , (4)

where m = ı(2t ′KM + tKM ). Therefore the gap closure occurs
when one of the following two conditions is verified

t − t ′ −
√

3(tKM + 2t ′KM ) = 0,

t − t ′ +
√

3(tKM + 2t ′KM ) = 0.
(5)

This leads to the following analytic expression for the Z2

invariant as a function of the hopping parameters:

(−1)� = sign[(t − t ′)2 − 3(tKM + 2t ′KM )2]. (6)

This relation has been checked numerically in terms of parity
eigenvalues according to Eq. (2). We obtain in this way the
phase diagram of Fig. 3(a): any tKM �= 0 defines a range of
t ′/t where the system behaves as a QSHI, and this range
depends on the strength of the spin-orbit coupling. The hopping
modulation has different effects if tKM = 0 or tKM �= 0 as
shown in Fig. 3(b) where the evolution of the gap value
is reported for tKM = t ′KM : for the undistorted system in
particular we have zero gap and maximum gap for tKM = 0
and tKM �= 0, respectively. Notice that the analytic expression
of the Z2 invariant allows us to obtain quite simply the
phase diagram also in the case of t ′KM �= tKM and that for
t ′KM = t ′/t × tKM we recover the results [18] of Ref. [17].
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FIG. 3. (Color online) (a) Phase diagram for the 2D honeycomb lattice with Kekulé distortion showing the topological behavior as a
function of nearest-neighbor modulation t ′ and spin-orbit coupling tKM . The gray area corresponds to t ′

KM = tKM while the dashed line is the
phase separation for t ′

KM = t ′/t × tKM . (b) Gap value as a function of the hopping parameter t ′ for different values of t ′
KM = tKM as indicated

in the inset. Lower panel: Density plots of the occupied energy states as a function of the k point with t ′
KM = tKM = 0.1. The evolution of the

band structure is considered in a subset of first nearest-neighbor hopping parameters [t ′/t = 1 (c), t ′/t = 1.5 (d), t ′/t = 2 (e)] indicated as
blue dots in panel (a). In the color scale, red indicates zero gap. The reduced Brillouin zones for the 6-site unit cell (thin red dotted lines) and
high symmetry points are shown.

III. EFFECTS OF e-e CORRELATION

The Kane-Mele-Hubbard model,

Ĥ =
∑

il,i ′l′s

til,i ′l′(s)ĉ†ils ĉi ′l′s + U
∑
il

ĉ
†
il↑ĉil↑ĉ

†
il↓ĉil↓, (7)

where on-site e-e repulsion is added to the noninteracting
Hamiltonian of Eq. (1), is a paradigmatic example of an
interacting topological insulator [19,20]. In this case, in order
to topologically characterize the system, we face two distinct
problems: on one side we need to substitute the single particle
band structure with the quasiparticle excitation energies that
can be obtained from the many-body Green’s function; on the
other side we must extend the Z2 parity invariant, originally
associated to a single particle state, to the interacting case. In
Refs. [21,22] it has been demonstrated that the Z2 invariant
is determined by the behavior of the one-particle propagator
at zero frequency only: the inverse of Green’s function at
zero frequency defines a fictitious noninteracting topological
Hamiltonian [23]

htopo(k) ≡ −G−1(k,0) (8)

and its eigenvectors

htopo(k)|k,n〉 = εn(k)|k,n〉 (9)

are the quantities that in Eq. (2) replace the noninteracting
band eigenvectors to obtain the topologically invariant for the
interacting system.

These concepts have been recently applied to identify
the topological character of heavy fermion mixed valence
compounds [24–27] and of the half-filled honeycomb lattice
[28] also in the presence of uniaxial bond dimerization [7].

In order to solve the eigenvalue problem (9), in strict anal-
ogy with what is done in any standard tight-binding scheme
for noninteracting Hamiltonians, a Bloch basis expression of
the topological Hamiltonian, namely, of the dressed Green’s
function and of its inverse, is required:

Gij (k,ω) = 〈�0|ĉ†kiĜĉkj |�0〉 + 〈�0|ĉkiĜĉ
†
kj |�0〉, (10)

where Ĝ = 1
ω−Ĥ

and

ĉ
†
ki = 1√

L

L∑
l

e−ik·(Rl+ri )ĉ
†
li , ĉki = 1√

L

L∑
l

eik·(Rl+ri )ĉli ,
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with Rl the lattice vectors (L → ∞) and ri the atomic positions
inside the unit cell.

Here we calculate the dressed Green’s function by cluster
perturbation theory (CPT) [29]. CPT belongs to the class
of quantum cluster theories [30] that solve the problem
of many interacting electrons in an extended lattice by a
divide-and-conquer strategy, namely, by solving first the
many body problem in a subsystem of finite size and then
embedding it within the infinite medium. Different quantum
cluster approaches (dynamical cluster approach [31], cellular
dynamical mean field theory [32,33], and variational cluster
approaches [34]) differ for the embedding procedure and/or
for the way the lattice Green’s function—or the corresponding
self-energy—is expressed in terms of the cluster one. The
common starting point is the choice of the M-site cluster used
to tile the extended lattice. By construction CPT is exact in
the two limits U/t = 0 (noninteracting band limit), U/t = ∞
(atomic limit); for intermediate values of U/t it opens a gap
in metallic systems at half occupation [35].

In CPT, Green’s function (10) for the extended lattice is
calculated by solving the equation

Gij (k,ω) = Gc
ij (ω) +

M∑
i ′

Bii ′(k,ω)Gi ′j (k,ω). (11)

Here Gc
ij is the cluster Green’s function in the local basis ob-

tained by exact diagonalization of the interacting Hamiltonian
for the finite cluster; we separately solve the problem for N ,
N − 1, and N + 1 electrons and express the cluster Green’s
function in the Lehmann representation at real frequencies.

The matrix Bii ′(k,ω) is given by

Bii ′(k,ω) =
L∑
l

eik·Rl

M∑
i ′′

Gc
ii ′′ (ω)ti ′′0,i ′l(s),

where ti ′′0,i ′l is the hopping between sites i ′ and i ′′ belonging
to different clusters.

The key approximation here is the expression of the
complete Green’s function in terms of Green’s functions of
decoupled clusters and it is important to verify the accuracy
of the results by using larger and larger cluster sizes. This
procedure is limited by the dimensions of Hilbert space used in
the exact diagonalization, dimensions that grow exponentially
with the number of sites. A further limitation in the cluster
choice arises by a symmetry requirement since only clusters
that preserve the point group symmetries of the lattice must
be used [28,30]. The role of symmetry in quantum cluster
approaches is complex: the extended system is described as
a periodic repetition of correlated units and the translation
periodicity is preserved only at the superlattice level. In the
honeycomb lattice where the Dirac cones are the consequence
of perfect long-range order, theories based on quantum cluster
schemes, such as CDMFT, VCA, and CPT, regardless of them
being variational or not, and independent on the details of the
specific implementations (different impurity solvers, different
temperatures), at tKM = 0 give rise to a spurious excitation
gap for U → 0. The only exception is the dynamical cluster
approach (DCA) that preserves by construction translation
symmetry and has been shown to describe better the small
U regime; DCA becomes, however, less accurate at large

U where it overemphasizes the semimetallic behavior of the
honeycomb lattice [36]. In this sense DCA and the other quan-
tum cluster approaches can be considered as complementary
and it would be interesting to compare their results also for
the distorted honeycomb lattice. Another strategy has been
proposed that seems to overcome this shortcoming, providing
for the undistorted honeycomb lattice a semimetal behavior
up to some finite U [37]. The strategy consists in choosing
clusters that break the lattice point C6 symmetry (8- and 10-site
clusters). The quasiparticle band dispersion that is obtained
in this way is, however, unphysical: quasiparticle energies at
k and Rk, R being a point group rotation, turn out to be
different, violating a very basic rule of band structure [28].
And it is just this violation that makes the system semimetallic
at finite U since the gap closes at a k point but not at its rotated
counterpart. For this reason breaking the rotational symmetry
is not an allowed strategy to correct the erroneous insulating
phase.

We have checked the dependence of our results on the clus-
ter size by comparing the case of the generalized dimerization
results obtained for 2- and 8-site clusters; we have verified
that no significant changes occur in the spectral functions and
for this reason we report results obtained only for the smallest
cluster size, namely, 2- and 6-site clusters for the generalized
bond dimerization and Kekulé distortion, respectively. Notice
that in this case the clusters used to “tile” the infinite lattice
are those shown in Fig. 1 and that t1 (t ′) describe intracluster
hoppings for the two distortions (generalized dimerization and
Kekulé, respectively). Equation (11) is solved by an M × M

matrix inversion at each k and ω. A second M × M matrix
inversion is needed to obtain the topological Hamiltonian
according to Eq. (8). The topological Hamiltonian is then
diagonalized and its eigenvectors are used for the calculation
of Z2 according to (2).

It is worth recalling that the eigenvalues of htopo used to
calculate the value of theZ2 invariant in principle have nothing
to do with the quasiparticle excitation energies: they only
contain topological information and the full Green’s function
is needed to calculate quasiparticle spectral functions

A(k,ω) = 1

π

∑
n

Im G(k,n,ω), (12)

where

G(k,n,ω) = 1

M

∑
ii ′

e−ik·(ri−ri′ )αn∗
i (k)αn

i ′(k)Gii ′(k,ω)

with n the band index and αn
i (k) the eigenstate coefficients

obtained by the single-particle band calculation [35]. Spectral
functions can also be used to identify topological properties,
looking for the existence of gapless quasiparticle states in one-
dimensional (1D) honeycomb ribbons. The energy broadening
necessarily involved in the calculation of spectral functions
makes this procedure less accurate than the calculation of the
Z2 invariant based on htopo eigenvectors: in G−1 no energy
broadening is required and the boundaries in the phase diagram
are sharply identified.

Figure 4 shows the results that we obtain for interacting
electrons in the honeycomb lattice with the two kinds of
hopping modulation (generalized dimerization and Kekulé
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FIG. 4. (Color online) Phase diagram and spectral functions for the Kane-Mele model of the honeycomb lattice in the presence of on-site
e-e interaction for the generalized bond dimerization (left panel) and for the Kekulé distortion (right panel). Panel (a): Phase diagrams for the
generalized bond dimerization obtained with different values of U as a function of t2 and t3 at tKM = 0.1. Panels (b)–(d): Spectral functions
for the dimerized honeycomb lattice with tKM = 0.1, U = 3, t2 = t3 = 1, and (b) t1 = 1, (c) t1 = 1.5, and (d) t1 = 2. Panel (e): Phase diagram
for the Kekulé distortion at a fixed value U = 3 as a function of t ′ and tKM . The filled area corresponds in both cases to the noninteracting
result reported in Figs. 2 and 3. The dashed line indicates the phase separation for t ′

KM = t ′/t × tKM . In blue and red are reported the results
assuming t ′

KM = tKM and t ′
KM = t ′/t × tKM , respectively. Panels (f)–(h): Spectral functions for the honeycomb lattice in the Kekulé distortion

with U = 3, t = 1, t ′
KM = tKM , and (f) t ′ = 1, (g) t ′ = 1.3, and (h) t ′ = 2.

distortion). By comparing the interacting case and the nonin-
teracting one we notice that the QSHI/TTI phases are modified
by the local e-e interaction for both lattice distortions. In the
case of generalized dimerization [Fig. 4(a)] the overall region
in parameter space where the system is in the QSHI phase
increases with U but at the cost of larger distortions: when on
the contrary the system is almost undistorted [lower corner on
the left of Fig. 4(a), where t2 and t3 are closer to t1] the effect
of e-e is to extend the region of the TTI phase. For U � 3.5
the undistorted system is always topologically trivial.

The phase separation lines remain linear and independent
on the strength of spin-orbit coupling, as in the noninteracting
case. Indeed, the effect of e-e interaction is to induce a
renormalization of the intracluster hopping parameters and

therefore the topological Hamiltonian of Eq. (8) coincides
with an effective single-particle Hamiltonian with modified
hopping terms. This is particularly evident when a 2-site cluster
is used as a basic unit in CPT, but remains true with larger
clusters. We have checked this by considering an 8-site cluster
and we do not find significant differences.

In the Kekulé distortion, as expected from the previous
analysis for the noninteracting case, different results are
obtained assuming t ′KM = tKM or t ′KM �= tKM . However in
both cases the effect of e-e interaction favors even more clearly
the TTI phase since the total area where the system behaves as
a QSHI is reduced with respect to the noninteracting case and,
for a given distortion, larger values of spin-orbit coupling are
required to have a nontrivial topological character [18].

115112-6



TOPOLOGICAL PROPERTIES OF THE BOND-MODULATED . . . PHYSICAL REVIEW B 91, 115112 (2015)

The lower panels of Fig. 4 show the spectral functions
that we obtain for the two kinds of hopping modulation as
a function of the intracluster hopping parameters (t1 and t ′,
respectively) at fixed values of Hubbard U and of intercluster
hopping parameters t ′KM = tKM (t2 = t3 = 1 and t = 1 in
the two cases, respectively). We notice that the hopping
modulation induces in both cases a closure of the energy
separation between filled and empty quasiparticle states,
signaling the topological phase transition.

IV. CONCLUSIONS

We have studied the joint effects of intrinsic spin-orbit
coupling, hopping modulation and on-site e-e interaction on
the topological properties of the 2D honeycomb lattice. The
goal was to understand how the topological phases induced by
intrinsic spin-orbit coupling are modified by different kinds
of lattice distortions and by e-e interaction. The main results
may be summarized as follows. In the noninteracting case the

shape of the phase diagram obtained assuming a generalized
dimerization does not depend on the value of the intrinsic
spin-orbit coupling: the phase separation lines are identical
for any value of tKM , with the noteworthy difference that
in the parameter range where the system is for tKM = 0 a
semimetal, for any other tKM �= 0 the system is a QSHI. In the
absence of spin-orbit coupling the Kekulé distortion makes the
system insulating and in this case the parameter space where
the system behaves as a QSHI increases with the value of tKM .

We have extended the analysis in terms of topological
invariants to the case of interacting electrons by calculating
the dressed Green’s function within CPT and the topological
Hamiltonian. For both lattice distortions, in the regime of
relatively small deformations, the effect of e-e interaction is
to reduce the region where the system behaves as a QSHI.
In this sense we may conclude that lattice distortions and
e-e interaction do not cooperate in inducing a non trivial
topological phase but rather reduce the possibility of finding
the honeycomb lattice in a nontrivial topological state.
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G. Kotliar, and A.-M. S. Tremblay, Phys. Rev. B 77, 184516
(2008).
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