9,472 research outputs found

    Different orderings in the narrow-band limit of the extended Hubbard model on the Bethe lattice

    Full text link
    We present the exact solution of a system of Fermi particles living on the sites of a Bethe lattice with coordination number z and interacting through on-site U and nearest-neighbor V interactions. This is a physical realization of the extended Hubbard model in the atomic limit. Within the Green's function and equations of motion formalism, we provide a comprehensive analysis of the model and we study the phase diagram at finite temperature in the whole model's parameter space, allowing for the on-site and nearest-neighbor interactions to be either repulsive or attractive. We find the existence of critical regions where charge ordering (V>0) and phase separation (V<0) are observed. This scenario is endorsed by the study of several thermodynamic quantities.Comment: 17 pages, 20 figure

    Role of the attractive intersite interaction in the extended Hubbard model

    Full text link
    We consider the extended Hubbard model in the atomic limit on a Bethe lattice with coordination number z. By using the equations of motion formalism, the model is exactly solved for both attractive and repulsive intersite potential V. By focusing on the case of negative V, i.e., attractive intersite interaction, we study the phase diagram at finite temperature and find, for various values of the filling and of the on-site coupling U, a phase transition towards a state with phase separation. We determine the critical temperature as a function of the relevant parameters, U/|V|, n and z and we find a reentrant behavior in the plane (U/|V|,T). Finally, several thermodynamic properties are investigated near criticality.Comment: 7 pages, 7 figures. EPJB Topical Issue on Novel Quantum Phases and Mesoscopic Physics in Quantum Gase

    Study of the spin-32\frac32 Hubbard-Kondo lattice model by means of the Composite Operator Method

    Full text link
    We study the spin-32\frac32 Hubbard-Kondo lattice model by means of the Composite Operator Method, after applying a Holstein-Primakov transformation. The spin and particle dynamics in the ferromagnetic state are calculated by taking into account strong on-site correlations between electrons and antiferromagnetic exchange among 32\frac32 spins, together with usual Hund coupling between electrons and spins

    Effects of two-site composite excitations in the Hubbard model

    Full text link
    The electronic states of the Hubbard model are investigated by use of the Composite Operator Method. In addition to the Hubbard operators, two other operators related with two-site composite excitations are included in the basis. Within the present formulation, higher-order composite excitations are reduced to the chosen operatorial basis by means of a procedure preserving the particle-hole symmetry. The positive comparison with numerical simulations for the double occupancy indicates that such approximation improves over the two-pole approximation.Comment: 2 pages, 1 figur

    The Mott-Hubbard transition and the paramagnetic insulating state in the two-dimensional Hubbard model

    Full text link
    The Mott-Hubbard transition is studied in the context of the two-dimensional Hubbard model. Analytical calculations show the existence of a critical value Uc of the potential strength which separates a paramagnetic metallic phase from a paramagnetic insulating phase. Calculations of the density of states and double occupancy show that the ground state in the insulating phase contains always a small fraction of empty and doubly occupied sites. The structure of the ground state is studied by considering the probability amplitude of intersite hopping. The results indicate that the ground state of the Mott insulator is characterized by a local antiferromagnetic order; the electrons keep some mobility, but this mobility must be compatible with the local ordering. The vanishing of some intersite probability amplitudes at U=Uc puts a constrain on the electron mobility. It is suggested that such quantities might be taken as the quantities which control the order in the insulating phase.Comment: 7 pages, 5 EPS figures, EuroTeX, to be published in EuroPhysics Letters; content changed, references remove

    Different realizations of tomographic principle in quantum state measurement

    Get PDF
    We establish a general principle for the tomographic approach to quantum state reconstruction, till now based on a simple rotation transformation in the phase space, which allows us to consider other types of transformations. Then, we will present different realizations of the principle in specific examples.Comment: 17 pages, Latex file, no figures, accepted by J. of Mod. Op

    Symmetries in the Physics of Strongly Correlated Electronic Systems

    Full text link
    Strongly correlated electron systems require the development of new theoretical schemes in order to describe their unusual and unexpected properties. The usual perturbation schemes are inadequate and new concepts must be introduced. In our scheme of calculations, the Composite Operator Method, is possible to recover, through a self-consistent calculation, a series of fundamental symmetries by choosing a suitable Hilbert space.Comment: 11 pages, LaTeX, Cmp2e.sty used, submitted to Condensed Matter Physic
    corecore