4,314 research outputs found

    Could Only Fermions Be Elementary?

    Full text link
    In standard Poincare and anti de Sitter SO(2,3) invariant theories, antiparticles are related to negative energy solutions of covariant equations while independent positive energy unitary irreducible representations (UIRs) of the symmetry group are used for describing both a particle and its antiparticle. Such an approach cannot be applied in de Sitter SO(1,4) invariant theory. We argue that it would be more natural to require that (*) one UIR should describe a particle and its antiparticle simultaneously. This would automatically explain the existence of antiparticles and show that a particle and its antiparticle are different states of the same object. If (*) is adopted then among the above groups only the SO(1,4) one can be a candidate for constructing elementary particle theory. It is shown that UIRs of the SO(1,4) group can be interpreted in the framework of (*) and cannot be interpreted in the standard way. By quantizing such UIRs and requiring that the energy should be positive in the Poincare approximation, we conclude that i) elementary particles can be only fermions. It is also shown that ii) C invariance is not exact even in the free massive theory and iii) elementary particles cannot be neutral. This gives a natural explanation of the fact that all observed neutral states are bosons.Comment: The paper is considerably revised and the following results are added: in the SO(1,4) invariant theory i) the C invariance is not exact even for free massive particles; ii) neutral particles cannot be elementar

    Space-like and time-like pion electromagnetic form factor and Fock state components within the Light-Front dynamics

    Get PDF
    The simultaneous investigation of the pion electromagnetic form factor in the space- and time-like regions within a light-front model allows one to address the issue of non-valence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector meson dominance (VMD) model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)2(GeV/c)^2, while in time-like region the model produces reasonable results up to 10 (GeV/c)2(GeV/c)^2.Comment: 74 pages, 11 figures, use revtex

    Search for evidence of two photon contribution in elastic electron proton data

    Full text link
    We reanalyze the most recent data on elastic electron proton scattering. We look for a deviation from linearity of the Rosenbluth fit to the differential cross section, which would be the signature of the presence of two photon exchange. The two photon contribution is parametrized by a one parameter formula, based on symmetry arguments. The present data do not show evidence for such deviation.Comment: 15 pages 3 figures More details on the fitting procedure, more explicit explanation

    The elastic electron-deuteron scattering beyond one-photon exchange

    Full text link
    We discuss the elastic ed scattering beyond Born approximation. It is shown that the reaction amplitude contains six generalized form factors, but only three linearly independent combinations of them (we call them generalized charge, quadrupole and magnetic form factors) contribute to the reaction cross section in the second order perturbation theory. We examine two-photon exchange and find that it includes two types of diagrams, when two virtual photons interact with the same nucleon and when the photons interact with different nucleons. Estimations based on nonrelativistic calculations with the deuteron wave function for realistic NN potential show that the main contribution to the generalized charge, quadrupole and magnetic form factors comes from diagrams of the first type.Comment: v2, published version in PR

    Detection of the tagged or untagged photons in acousto-optic imaging of thick highly scattering media by photorefractive adaptive holography

    Full text link
    We propose an original adaptive wavefront holographic setup based on the photorefractive effect (PR), to make real-time measurements of acousto-optic signals in thick scattering media, with a high flux collection at high rates for breast tumor detection. We describe here our present state of art and understanding on the problem of breast imaging with PR detection of the acousto-optic signal
    • …
    corecore