30 research outputs found

    On-line high-performance liquid chromatography/mass spectrometric characterization of native oligosaccharides from glycoproteins

    No full text
    An on-line high-performance liquid chromatography/mass spectrometry (HPLC/MS) method is described for the rapid characterization of any type of oligosaccharide released from glycoproteins. The procedure can be applied without further manipulation to fractions collected from a high-performance anion-exchange chromatography-pulse amperometric detection (HPAEC-PAD) system commonly used for glycosylation mapping of glycoproteins, or to a pool of oligosaccharides directly released from glycoproteins. The system consists of a porous graphitized high-performance chromatography column (Hypercarb) coupled to a quadrupole time-of-flight (TOF) mass spectrometer. Oligosaccharides are eluted from the column with a gradient of ammonium acetate/acetonitrile and directly identified following in-source fragmentation. Some applications of the method are presented, as well as information about the spectra and fragmentation behavior observed for N- and O-linked oligosaccharides released from some recombinant glycoproteins. Low femtomole limits of detection are achieved using proper miniaturization. Copyright (C) 2002 John Wiley Sons, Ltd

    An antigenic peptide produced by reverse splicing and double asparagine deamidation

    No full text
    A variety of unconventional translational and posttranslational mechanisms contribute to the production of antigenic peptides, thereby increasing the diversity of the peptide repertoire presented by MHC class I molecules. Here, we describe a class I-restricted peptide that combines several posttranslational modifications. It is derived from tyrosinase and recognized by tumor-infiltrating lymphocytes isolated from a melanoma patient. This unusual antigenic peptide is made of two noncontiguous tyrosinase fragments that are spliced together in the reverse order. In addition, it contains two aspartate residues that replace the asparagines encoded in the tyrosinase sequence. We confirmed that this peptide is naturally presented at the surface of melanoma cells, and we showed that its processing sequentially requires translation of tyrosinase into the endoplasmic reticulum and its retrotranslocation into the cytosol, where deglycosylation of the two asparagines by peptide-N-glycanase turns them into aspartates by deamidation. This process is followed by cleavage and splicing of the appropriate fragments by the standard proteasome and additional transport of the resulting peptide into the endoplasmic reticulum through the transporter associated with antigen processing (TAP)
    corecore