164 research outputs found

    Influence of branch points in the complex plane on the transmission through double quantum dots

    Full text link
    We consider single-channel transmission through a double quantum dot system consisting of two single dots that are connected by a wire and coupled each to one lead. The system is described in the framework of the S-matrix theory by using the effective Hamiltonian of the open quantum system. It consists of the Hamiltonian of the closed system (without attached leads) and a term that accounts for the coupling of the states via the continuum of propagating modes in the leads. This model allows to study the physical meaning of branch points in the complex plane. They are points of coalesced eigenvalues and separate the two scenarios with avoided level crossings and without any crossings in the complex plane. They influence strongly the features of transmission through double quantum dots.Comment: 30 pages, 14 figure

    Field quantization for chaotic resonators with overlapping modes

    Get PDF
    Feshbach's projector technique is employed to quantize the electromagnetic field in optical resonators with an arbitray number of escape channels. We find spectrally overlapping resonator modes coupled due to the damping and noise inflicted by the external radiation field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of random lasing.Comment: 4 pages, 1 figur

    Observation of resonance trapping in an open microwave cavity

    Full text link
    The coupling of a quantum mechanical system to open decay channels has been theoretically studied in numerous works, mainly in the context of nuclear physics but also in atomic, molecular and mesoscopic physics. Theory predicts that with increasing coupling strength to the channels the resonance widths of all states should first increase but finally decrease again for most of the states. In this letter, the first direct experimental verification of this effect, known as resonance trapping, is presented. In the experiment a microwave Sinai cavity with an attached waveguide with variable slit width was used.Comment: to be published in Phys. Rev. Let

    Resonance trapping and saturation of decay widths

    Full text link
    Resonance trapping appears in open many-particle quantum systems at high level density when the coupling to the continuum of decay channels reaches a critical strength. Here a reorganization of the system takes place and a separation of different time scales appears. We investigate it under the influence of additional weakly coupled channels as well as by taking into account the real part of the coupling term between system and continuum. We observe a saturation of the mean width of the trapped states. Also the decay rates saturate as a function of the coupling strength. The mechanism of the saturation is studied in detail. In any case, the critical region of reorganization is enlarged. When the transmission coefficients for the different channels are different, the width distribution is broadened as compared to a chi_K^2 distribution where K is the number of channels. Resonance trapping takes place before the broad state overlaps regions beyond the extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.

    Trace identities and their semiclassical implications

    Full text link
    The compatibility of the semiclassical quantization of area-preserving maps with some exact identities which follow from the unitarity of the quantum evolution operator is discussed. The quantum identities involve relations between traces of powers of the evolution operator. For classically {\it integrable} maps, the semiclassical approximation is shown to be compatible with the trace identities. This is done by the identification of stationary phase manifolds which give the main contributions to the result. The same technique is not applicable for {\it chaotic} maps, and the compatibility of the semiclassical theory in this case remains unsettled. The compatibility of the semiclassical quantization with the trace identities demonstrates the crucial importance of non-diagonal contributions.Comment: LaTeX - IOP styl

    Shape of Pion Distribution Amplitude

    Full text link
    A scenario is investigated in which the leading-twist pion distribution amplitude phi_pi (x) is approximated by the pion decay constant f_pi for all essential values of the light-cone fraction x. A model for the light-front wave function Psi(x,k_perp) is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination k_perp^2/x(1-x). It is shown that this model easily reproduces the fit of recent large-Q^2 BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.Comment: References added, typos fixed, one figure added, some minor changes in tex

    Signatures of the correlation hole in total and partial cross sections

    Full text link
    In a complex scattering system with few open channels, say a quantum dot with leads, the correlation properties of the poles of the scattering matrix are most directly related to the internal dynamics of the system. We may ask how to extract these properties from an analysis of cross sections. In general this is very difficult, if we leave the domain of isolated resonances. We propose to consider the cross correlation function of two different elastic or total cross sections. For these we can show numerically and to some extent also analytically a significant dependence on the correlations between the scattering poles. The difference between uncorrelated and strongly correlated poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde

    Bound states in the continuum in open Aharonov-Bohm rings

    Full text link
    Using formalism of effective Hamiltonian we consider bound states in continuum (BIC). They are those eigen states of non-hermitian effective Hamiltonian which have real eigen values. It is shown that BICs are orthogonal to open channels of the leads, i.e. disconnected from the continuum. As a result BICs can be superposed to transport solution with arbitrary coefficient and exist in propagation band. The one-dimensional Aharonov-Bohm rings that are opened by attaching single-channel leads to them allow exact consideration of BICs. BICs occur at discrete values of energy and magnetic flux however it's realization strongly depend on a way to the BIC's point.Comment: 5 pgaes, 4 figure

    The classical limit for a class of quantum baker's maps

    Get PDF
    We show that the class of quantum baker's maps defined by Schack and Caves have the proper classical limit provided the number of momentum bits approaches infinity. This is done by deriving a semi-classical approximation to the coherent-state propagator.Comment: 18 pages, 5 figure

    A comparison of extremal optimization with flat-histogram dynamics for finding spin-glass ground states

    Full text link
    We compare the performance of extremal optimization (EO), flat-histogram and equal-hit algorithms for finding spin-glass ground states. The first-passage-times to a ground state are computed. At optimal parameter of tau=1.15, EO outperforms other methods for small system sizes, but equal-hit algorithm is competitive to EO, particularly for large systems. Flat-histogram and equal-hit algorithms offer additional advantage that they can be used for equilibrium thermodynamic calculations. We also propose a method to turn EO into a useful algorithm for equilibrium calculations. Keywords: extremal optimization. flat-histogram algorithm, equal-hit algorithm, spin-glass model, ground state.Comment: 10 LaTeX pages, 2 figure
    corecore