107 research outputs found
Interstitial Mn in (Ga,Mn)As: Binding energy and exchange coupling
We present ab initio calculations of total energies of Mn atoms in various
interstitial positions. The calculations are performed by the full-potential
linearized plane-wave method. The minimum energy is found for tetrahedral
T(As4) position, but the energy of the T(Ga4) site differs by only a few meV.
The T(Ga4) position becomes preferable in the p-type materials. In samples with
one substitutional and one interstitial Mn the Mn atoms tend to form close pair
with antiparallel magnetic moments. We also use the spin-splitting of the
valence band to estimate the exchange coupling Jpd for various positions of Mn.
It is the same for the substitutional and T(As4) position and it is only
slightly reduced for the T(Ga4) position. The hybridization of Mn d-states with
six next-nearest neighbors of the interstitial Mn explains the insensitivity of
Jpd to the position of Mn.Comment: 6 pages, 3 figures, 3 tables, submitted to the Physical Review
Magnetism of 3d transition metal atoms on W(001): submonolayer films
We have investigated random submonolayer films of 3d transition metals on
W(001). The tight-binding linear muffin-tin orbital method combined with the
coherent potential approximation was employed to calculate the electronic
structure of the films. We have estimated local magnetic moments and the
stability of different magnetic structures, namely the ferromagnetic order, the
disordered local moments and the non-magnetic state, by comparing the total
energies of the corresponding systems. It has been found that the magnetic
moments of V and Cr decrease and eventually disappear with decreasing coverage.
On the other hand, Fe retains approximately the same magnetic moment throughout
the whole concentration range from a single impurity to the monolayer coverage.
Mn is an intermediate case between Cr and Fe since it is non-magnetic at very
low coverages and ferromagnetic otherwise.Comment: 5 pages, 3 figures in 6 files; presented at ICN&T 2006, Basel,
Switzerlan
Prospect for room temperature tunneling anisotropic magnetoresistance effect: density of states anisotropies in CoPt systems
Tunneling anisotropic magnetoresistance (TAMR) effect, discovered recently in
(Ga,Mn)As ferromagnetic semiconductors, arises from spin-orbit coupling and
reflects the dependence of the tunneling density of states in a ferromagnetic
layer on orientation of the magnetic moment. Based on ab initio relativistic
calculations of the anisotropy in the density of states we predict sizable TAMR
effects in room-temperature metallic ferromagnets. This opens prospect for new
spintronic devices with a simpler geometry as these do not require
antiferromagnetically coupled contacts on either side of the tunnel junction.
We focus on several model systems ranging from simple hcp-Co to more complex
ferromagnetic structures with enhanced spin-orbit coupling, namely bulk and
thin film L1-CoPt ordered alloys and a monatomic-Co chain at a Pt surface
step edge. Reliability of the predicted density of states anisotropies is
confirmed by comparing quantitatively our ab initio results for the
magnetocrystalline anisotropies in these systems with experimental data.Comment: 4 pages, 2 figure
Electronic structure and magnetic properties of cobalt intercalated in graphene on Ir(111)
Using a combination of photoemission and x-ray magnetic circular dichroism (XMCD), we characterize the growth and the electronic as well as magnetic structure of cobalt layers intercalated in between graphene and Ir(111). We demonstrate that magnetic ordering exists beyond one monolayer intercalation, and determine the Co orbital and spin magnetic moments. XMCD from the carbon edge shows an induced magnetic moment in the graphene layer, oriented antiparallel to that of cobalt. The XMCD experimental data are discussed in comparison to our results of first-principles electronic structure calculations. It is shown that good agreement between theory and experiment for the Co magnetic moments can be achieved when the local-spin-density approximation plus the Hubbard U (LSDA+U) is used
Chemical ordering and composition fluctuations at the (001) surface of the Fe-Ni Invar alloy
We report on a study of (001) oriented fcc Fe-Ni alloy surfaces which
combines first-principles calculations and low-temperature STM experiments.
Density functional theory calculations show that Fe-Ni alloy surfaces are
buckled with the Fe atoms slightly shifted outwards and the Ni atoms inwards.
This is consistent with the observation that the atoms in the surface layer can
be chemically distinguished in the STM image: brighter spots (corrugation
maxima with increased apparent height) indicate iron atoms, darker ones nickel
atoms. This chemical contrast reveals a c2x2 chemical order (50% Fe) with
frequent Fe-rich defects on Invar alloy surface. The calculations also indicate
that subsurface composition fluctuations may additionally modulate the apparent
height of the surface atoms. The STM images show that this effect is pronounced
compared to the surfaces of other disordered alloys, which suggests that some
chemical order and corresponding concentration fluctuations exist also in the
subsurface layers of Invar alloy. In addition, detailed electronic structure
calculations allow us to identify the nature of a distinct peak below the Fermi
level observed in the tunneling spectra. This peak corresponds to a surface
resonance band which is particularly pronounced in iron-rich surface regions
and provides a second type of chemical contrast with less spatial resolution
but one that is essentially independent of the subsurface composition.Comment: 7 pages, 5 figure
Magnetic anisotropy of single 3d spins on CuN surface
First-principles calculations of the magnetic anisotropy energy for Mn- and
Fe-atoms on CuN/Cu(001) surface are performed making use of the torque method.
The easy magnetization direction is found to be different for Mn and Fe atoms
in accord with the experiment. It is shown the magnetic anisotropy has a
single-ion character and mainly originates from the local magnetic moment of
Mn- and Fe-atoms. The uniaxial magnetic anisotropy constants are calculated in
reasonable agreement with the experiment
Diffusion rates of Cu adatoms on Cu(111) in the presence of an adisland nucleated at FCC or HCP sites
The surface diffusion of Cu adatoms in the presence of an adisland at FCC or
HCP sites on Cu(111) is studied using the EAM potential derived by Mishin {\it
et al.} [Phys. Rev. B {\bf 63} 224106 (2001)]. The diffusion rates along
straight (with close-packed edges) steps with (100) and (111)-type microfacets
(resp. step A and step B) are first investigated using the transition state
theory in the harmonic approximation. It is found that the classical limit
beyond which the diffusion rates follow an Arrhenius law is reached above the
Debye temperature. The Vineyard attempt frequencies and the (static) energy
barriers are reported. Then a comparison is made with the results of more
realistic classical molecular dynamic simulations which also exhibit an
Arrhenius-like behavior. It is concluded that the corresponding energy barriers
are completely consistent with the static ones within the statistical errors
and that the diffusion barrier along step B is significantly larger than along
step A. In contrast the prefactors are very different from the Vineyard
frequencies. They increase with the static energy barrier in agreement with the
Meyer-Neldel compensation rule and this increase is well approximated by the
law proposed by Boisvert {\it et al.} [Phys. Rev. Lett. {\bf 75} 469 (1995)].
As a consequence, the remaining part of this work is devoted to the
determination of static energy barriers for a large number of diffusion events
that can occur in the presence of an adisland. In particular, it is found that
the corner crossing diffusion process for triangular adislands is markedly
different for the two types of borders (A or B). From this set of results the
diffusion rates of the most important atomic displacements can be predicted and
used as input in Kinetic Monte-Carlo simulations
- …