44 research outputs found

    Open-boundary modal analysis: Interpolation, extrapolation, and filtering

    Get PDF
    Increasingly accurate remote sensing techniques are available today, and methods such as modal analysis are used to transform, interpolate, and regularize the measured velocity fields. Until recently, the modes used did not incorporate flow across an open boundary of the domain. Open boundaries are an important concept when the domain is not completely closed by a shoreline. Previous modal analysis methods, such as those of Lipphardt et al. (2000), project the data onto closed-boundary modes, and then add a zero-order mode to simulate flow across the boundary. Chu et al. (2003) propose an alternative where the modes are constrained by a prescribed boundary condition. These methods require an a priori knowledge of the normal velocity at the open boundary. This flux must be extrapolated from the data or extracted from a numerical model of a larger-scale domain, increasing the complexity of the operation. In addition, such methods make it difficult to add a threshold on the length scale of open-boundary processes. Moreover, the boundary condition changes in time, and the computation of all or some modes must be done at each time step. Hence real-time applications, where robustness and efficiency are key factors, were hardly practical. We present an improved procedure in which we add scalable boundary modes to the set of eigenfunctions. The end result of open-boundary modal analysis (OMA) is a set of time and data independent eigenfunctions that can be used to interpolate, extrapolate and filter flows on an arbitrary domain with or without flow through segments of the boundary. The modes depend only on the geometry and do not change in time

    Nonuniform Coverage and Cartograms

    Full text link

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    Persistent Transport Barrier on the West Florida Shelf

    Get PDF
    Analysis of drifter trajectories in the Gulf of Mexico has revealed the existence of a region on the southern portion of the West Florida Shelf (WFS) that is not visited by drifters that are released outside of the region. This so-called ``forbidden zone'' (FZ) suggests the existence of a persistent cross-shelf transport barrier on the southern portion of the WFS. In this letter a year-long record of surface currents produced by a Hybrid-Coordinate Ocean Model simulation of the WFS is used to identify Lagrangian coherent structures (LCSs), which reveal the presence of a robust and persistent cross-shelf transport barrier in approximately the same location as the boundary of the FZ. The location of the cross-shelf transport barrier undergoes a seasonal oscillation, being closer to the coast in the summer than in the winter. A month-long record of surface currents inferred from high-frequency (HF) radar measurements in a roughly 60 km Ă—\times 80 km region on the WFS off Tampa Bay is also used to identify LCSs, which reveal the presence of robust transient transport barriers. While the HF-radar-derived transport barriers cannot be unambiguously linked to the boundary of the FZ, this analysis does demonstrate the feasibility of monitoring transport barriers on the WFS using a HF-radar-based measurement system. The implications of a persistent cross-shelf transport barrier on the WFS for the development of harmful algal blooms on the shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter

    Computation and approximation of the length scales of harmonic modes with application to the mapping of surface currents in the Gulf of Eilat

    No full text
    Open-boundary modal analysis (OMA) is a generalized Fourier transform that interpolates, extrapolates, and filters scattered current measurements and produces smooth current maps in coastal areas. Boundary conditions are enforced by adjusting the OMA modes to the coastline. Filtering is achieved by discarding OMA modes whose length scales are below a selected threshold. In this paper, we determine the length scale of the OMA modes, and we derive approximated formulas. Operational use of the OMA modes and the length scale formulas are illustrated on surface currents measured by high-frequency radar in the Gulf of Eilat (Gulf of Aqaba)

    Tricubic interpolation in three dimensions

    No full text
    The purpose of this paper is to give a local tricubic interpolation scheme in three dimensions that is both C^1 and isotropic. The algorithm is based on a specific 64 Ă— 64 matrix that gives the relationship between the derivatives at the corners of the elements and the coefficients of the tricubic interpolant for this element. In contrast with global interpolation where the interpolated function usually depends on the whole data set, our tricubic local interpolation only uses data in a neighbourhood of an element. We show that the resulting interpolated function and its three first derivatives are continuous if one uses cubic interpolants. The implementation of the interpolator can be downloaded as a static and dynamic library for most platforms. The major difference between this work and current local interpolation schemes is that we do not separate the problem into three one-dimensional problems. This allows for a much easier and accurate computation of higher derivatives of the extrapolated field. Applications to the computation of Lagrangian coherent structures in ocean data are briefly discussed
    corecore