55 research outputs found
Non-local Realistic Theories and the Scope of the Bell Theorem
According to a widespread view, the Bell theorem establishes the untenability
of so-called 'local realism'. On the basis of this view, recent proposals by
Leggett, Zeilinger and others have been developed according to which it can be
proved that even some non-local realistic theories have to be ruled out. As a
consequence, within this view the Bell theorem allows one to establish that no
reasonable form of realism, be it local or non-local, can be made compatible
with the (experimentally tested) predictions of quantum mechanics. In the
present paper it is argued that the Bell theorem has demonstrably nothing to do
with the 'realism' as defined by these authors and that, as a consequence,
their conclusions about the foundational significance of the Bell theorem are
unjustified.Comment: Forthcoming in Foundations of Physic
Relational EPR
We study the EPR-type correlations from the perspective of the relational
interpretation of quantum mechanics. We argue that these correlations do not
entail any form of 'non-locality', when viewed in the context of this
interpretation. The abandonment of strict Einstein realism implied by the
relational stance permits to reconcile quantum mechanics, completeness,
(operationally defined) separability, and locality.Comment: Revised, published versio
Winterberg's conjectured breaking of the superluminal quantum correlations over large distances
We elaborate further on a hypothesis by Winterberg that turbulent
fluctuations of the zero point field may lead to a breakdown of the
superluminal quantum correlations over very large distances. A phenomenological
model that was proposed by Winterberg to estimate the transition scale of the
conjectured breakdown, does not lead to a distance that is large enough to be
agreeable with recent experiments. We consider, but rule out, the possibility
of a steeper slope in the energy spectrum of the turbulent fluctuations, due to
compressibility, as a possible mechanism that may lead to an increased
lower-bound for the transition scale. Instead, we argue that Winterberg
overestimated the intensity of the ZPF turbulent fluctuations. We calculate a
very generous corrected lower bound for the transition distance which is
consistent with current experiments.Comment: 7 pages, submitted to Int. J. Theor. Phy
Current Concepts on Antiplatelet Therapy: Focus on the Novel Thienopyridine and Non-Thienopyridine Agents
Thienopyridines are a class of drug targeting the platelet adenosine diphosphate (ADP) 2 receptor. They significantly reduce platelet activity and are therefore clinically beneficial in settings where platelet activation is a key pathophysiological feature, particularly myocardial infarction. Ticlopidine, the first of the class introduced to clinical practice, was soon challenged and almost completely replaced by clopidogrel for its better tolerability. More recently, prasugrel and ticagrelor have been shown to provide a more powerful antiplatelet action compared to clopidogrel but at a cost of higher risk of bleeding complications. Cangrelor, a molecule very similar to ticagrelor, is currently being evaluated against clopidogrel. Considering the key balance of ischemic protection and bleeding risk, this paper discusses the background to the development of prasugrel, ticagrelor, and cangrelor and aims to characterise their risk-benefit profile and possible implementation in daily practice
Quantum mechanical effect of path-polarization contextuality for a single photon
Using measurements pertaining to a suitable Mach-Zehnder(MZ) type setup, a
curious quantum mechanical effect of contextuality between the path and the
polarization degrees of freedom of a polarized photon is demonstrated, without
using any notion of realism or hidden variables - an effect that holds good for
the product as well as the entangled states. This form of experimental
context-dependence is manifested in a way such that at \emph{either} of the two
exit channels of the MZ setup used, the empirically verifiable
\emph{subensemble} statistical properties obtained by an arbitrary polarization
measurement depend upon the choice of a commuting(comeasurable) path
observable, while this effect disappears for the \emph{whole ensemble} of
photons emerging from the two exit channels of the MZ setup.Comment: To be published in IJT
A Qualified Kolmogorovian Account of Probabilistic Contextuality
We describe a mathematical language for determining all possible patterns of
contextuality in the dependence of stochastic outputs of a system on its
deterministic inputs. The central notion is that of all possible couplings for
stochastically unrelated outputs indexed by mutually incompatible values of
inputs. A system is characterized by a pattern of which outputs can be
"directly influenced" by which inputs (a primitive relation, hypothetical or
normative), and by certain constraints imposed on the outputs (such as
Bell-type inequalities or their quantum analogues). The set of couplings
compatible with these constraints represents a form of contextuality in the
dependence of outputs on inputs with respect to the declared pattern of direct
influences.Comment: Lecture Notes in Computer Science 8369, 201-212 (2014
Quantum Locality
It is argued that while quantum mechanics contains nonlocal or entangled
states, the instantaneous or nonlocal influences sometimes thought to be
present due to violations of Bell inequalities in fact arise from mistaken
attempts to apply classical concepts and introduce probabilities in a manner
inconsistent with the Hilbert space structure of standard quantum mechanics.
Instead, Einstein locality is a valid quantum principle: objective properties
of individual quantum systems do not change when something is done to another
noninteracting system. There is no reason to suspect any conflict between
quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections
elsewhere. To appear in Foundations of Physic
- …