1,661 research outputs found

    A Medium Resolution Near-Infrared Spectral Atlas of O and Early B Stars

    Full text link
    We present intermediate resolution (R ~ 8,000 - 12,000) high signal-to-noise H- and K-band spectroscopy of a sample of 37 optically visible stars, ranging in spectral type from O3 to B3 and representing most luminosity classes. Spectra of this quality can be used to constrain the temperature, luminosity and general wind properties of OB stars, when used in conjunction with sophisticated atmospheric model codes. Most important is the need for moderately high resolutions (R > 5000) and very high signal-to-noise (S/N > 150) spectra for a meaningful profile analysis. When using near-infrared spectra for a classification system, moderately high signal-to-noise (S/N ~ 100) is still required, though the resolution can be relaxed to just a thousand or two. In the appendix we provide a set of very high quality near-infrared spectra of Brackett lines in six early-A dwarfs. These can be used to aid in the modeling and removal of such lines when early-A dwarfs are used for telluric spectroscopic standards.Comment: 12 pages, 3 tables, 14 figures. AASTex preprint style. To appear in ApJS, November 2005. All spectra are available by contacting M.M. Hanso

    Optical Spectral Signatures of Dusty Starburst Galaxies

    Full text link
    We analyse the optical spectral properties of the complete sample of Very Luminous Infrared Galaxies presented by Wu et al. (1998a,b) and we find a high fraction (~50 %) of spectra showing both a strong H_delta line in absorption and relatively modest [OII] emission (e(a) spectra). The e(a) signature has been proposed as an efficient method to identify dusty starburst galaxies and we study the star formation activity and the nature of these galaxies, as well as the effects of dust on their observed properties. We examine their emission line characteristics, in particular their [OII]/H_alpha ratio, and we find this to be greatly affected by reddening. A search for AGN spectral signatures reveals that the e(a)'s are typically HII/LINER galaxies. We compare the star formation rates derived from the FIR luminosities with the estimates based on the H_alpha line and find that the values obtained from the optical emission lines are a factor of 10-70 (H_alpha) and 20-140 ([OII]) lower than the FIR estimates (50-300 M_sun yr^-1). We then study the morphological properties of the e(a) galaxies, looking for a near companion or signs of a merger/interaction. In order to explore the evolution of the e(a) population, we present an overview of the available observations of e(a)'s in different environments both at low and high redshift. Finally, we discuss the role of dust in determining the e(a) spectral properties and we propose a scenario of selective obscuration in which the extinction decreases with the stellar age.Comment: 26 pages, Latex, including 7 postscript figures, accepted for publication in the Astrophysical Journa

    Star Formation and Selective Dust Extinction in Luminous Starburst Galaxies

    Get PDF
    We investigate the star formation and dust extinction properties of very luminous infrared galaxies whose spectra display a strong Hdelta line in absorption and a moderate [OII] emission (e[a] spectrum). This spectral combination has been suggested to be a useful method to identify dusty starburst galaxies at any redshift on the basis of optical data alone. We compare the average e(a) optical spectrum with synthetic spectra that include both the stellar and the nebular contribution, allowing dust extinction to affect differentially the stellar populations of different ages. We find that reproducing the e(a) spectrum requires the youngest stellar generations to be significantly more extinguished by dust than older stellar populations, and implies a strong ongoing star formation activity at a level higher than in quiescent spirals. A model fitting the optical spectrum does not necessarily produce the observed FIR luminosity and this can be explained by the existence of stellar populations which are practically obscured at optical wavelengths. Models in which dust and stars are uniformly mixed yield a reddening of the emerging emission lines which is too low compared to observations: additional foreground reddening is required.Comment: 17 pages, 4 Postscript figures, ApJ in pres

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa

    Strain localization and percolation of stable structure in amorphous solids

    Full text link
    Spontaneous strain localization occurs during mechanical tests of a model amorphous solid simulated using molecular dynamics. The degree of localization depends upon the extent of structural relaxation prior to mechanical testing. In the most rapidly quenched samples higher strain rates lead to increased localization, while the more gradually quenched samples exhibit the opposite strain rate dependence. This transition coincides with the k-core percolation of atoms with quasi-crystal-like short range order. The authors infer the existence of a related microstructural length scale.Comment: 4 pages, 4 figure

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure

    Evaluation of the LEP Centre-of-Mass Energy Above the W-Pair Production Threshold

    Get PDF
    Knowledge of the centre-of-mass energy at LEP2 is of primary importance to set the absolute energy scale for the measurement of the W-boson mass. The beam energy above 80 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is calibrated against precise measurements of the average beam energy between 41 and 55 GeV made using the resonant depolarisation technique. The linearity of the relationship is tested by comparing the fields measured by the probes with the total bending field measured by a flux loop. This test results in the largest contribution to the systematic uncertainty. Several further corrections are applied to derive the the centre-of-mass energies at each interaction point. In addition the centre-of-mass energy spread is evaluated. The beam energy has been determined with a precision of 25 MeV for the data taken in 1997, corresponding to a relative precision of 2.7x10^{-4}. This is small in comparison to the present uncertainty on the W mass measurement at LEP. However, the ultimate statistical precision on the W mass with the full LEP2 data sample should be around 25 MeV, and a smaller uncertainty on the beam energy is desirable. Prospects for improvements are outlined.Comment: 24 pages, 10 figures, Latex, epsfig; replaced by version accepted by European Physical Journal

    Infrared Spectroscopic Study of a Selection of AGB and Post-AGB Stars

    Full text link
    We present here near-infrared spectroscopy in the H and K bands of a selection of nearly 80 stars that belong to various AGB types, namely S type, M type and SR type. This sample also includes 16 Post-AGB (PAGB) stars. From these spectra, we seek correlations between the equivalent widths of some important spectral signatures and the infrared colors that are indicative of mass loss. Repeated spectroscopic observations were made on some PAGB stars to look for spectral variations. We also analyse archival SPITZER mid-infrared spectra on a few PAGB stars to identify spectral features due to PAH molecules providing confirmation of the advanced stage of their evolution. Further, we model the SEDs of the stars (compiled from archival data) and compare circumstellar dust parameters and mass loss rates in different types. Our near-infrared spectra show that in the case of M and S type stars, the equivalent widths of the CO(3-0) band are moderately correlated with infrared colors, suggesting a possible relationship with mass loss processes. A few PAGB stars revealed short term variability in their spectra, indicating episodic mass loss: the cooler stars showed in CO first overtone bands and the hotter ones showed in HI Brackett lines. Our spectra on IRAS 19399+2312 suggest that it is a transition object. From the SPITZER spectra, there seems to be a dependence between the spectral type of the PAGB stars and the strength of the PAH features. Modelling of SEDs showed among the M and PAGB stars that the higher the mass loss rates, the higher the [K-12] colour in our sample.Comment: 14 pages; accepted in MNRAS, 200

    Multiwavelength Study of the Starburst Galaxy NGC 7714. II: The Balance between Young, Intermediate Age and Old Stars

    Get PDF
    We combine existing multiwavelength data (incl. an HST/GHRS UV spectrum, an optical spectrum, far-IR, Xray and radio fluxes) with new HST/WFPC2 images, near-IR photometry and K band spectroscopy. We use these data to constrain the young, the intermediate age and the old stellar populations in the central 330 pc of the starburst galaxy NGC 7714. [...] We find that the young burst responsible for the UV light is only a small part of an extended episode of enhanced star formation (SF) [...]. The mass of young and intermediate age stars thus formed equals at least 10% of the mass locked in pre-existing stars of the underlying galaxy nucleus [...]. The spectrophotometric SF timescale is long compared to the ~110 Myr elapsed since closest contact with NGC 7715. The trigger of the starburst remains elusive. NGC 7714 owes its brightness in the UV to a few low extinction lines of sight towards young stars. [...] The different extinction estimates obtained from different indicators result naturally from the coexistence of populations with various ages and obscurations. The near-IR continuum image looks smoothest, as a consequence of lower sensitivity to extinction and of a larger contribution of old stars. We compare the nuclear properties of NGC 7714 with results from studies in larger apertures. We emphasize that the global properties of starburst galaxies are the result of the averaging over many lines of sight with diverse properties in terms of obscuration and stellar ages.Comment: 29 pages (+20 figures and tables), Latex2e (figs. included), uses aastex.cls. To be published in ApJ (May 2001 issue
    • 

    corecore