114 research outputs found

    Spontaneous Evolution of Rydberg Atoms into an Ultracold Plasma

    Get PDF
    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm21. When the atoms are initially bound by 70 cm21, this evolution occurs when most of the atoms are translationally cold, ,1 mK, but a small fraction, 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma

    Molecular cloning of a functional human galanin receptor.

    Full text link

    Spontaneous Evolution of Rydberg Atoms into an Ultracold Plasma

    Get PDF
    We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm21. When the atoms are initially bound by 70 cm21, this evolution occurs when most of the atoms are translationally cold, ,1 mK, but a small fraction, 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma

    PEMBERDAYAAN PEREMPUAN MARGINAL MELALUI PROGRAM PENDIDIKAN KECAKAPAN HIDUP-PEREMPUAN (PKH-P)

    Get PDF
    This paper describes the empowerment of marginal women through women's life skill education program. Lack of access to education, economy, employment, public policy, basic rights, gender equality, politics, and health are the causes of women getting marginalized. Empowering women through life skills education are an effort to empower women through various activities. The result of program “PKH-P (Pendidikan Kecakapan Hidup-Perempuan” is behavior change, that is the increasing of knowledge, skill, and attitude of self. So that marginal women can help themselves to be more empowered and out of the condition of their marginality towards the quality of life and higher level of living welfare

    Evolution dynamics of a dense frozen Rydberg gas to plasma

    Get PDF
    Dense samples of cold Rydberg atoms have previously been observed to spontaneously evolve to a plasma, despite the fact that each atom may be bound by as much as 100 cm−1. Initially, ionization is caused by blackbody photoionization and Rydberg-Rydberg collisions. After the first electrons leave the interaction re- gion, the net positive charge traps subsequent electrons. As a result, rapid ionization starts to occur after 1 μs caused by electron-Rydberg collisions. The resulting cold plasma expands slowly and persists for tens of microseconds. While the initial report on this process identified the key issues described above, it failed to resolve one key aspect of the evolution process. Specifically, redistribution of population to Rydberg states other than the one initially populated was not observed, a necessary mechanism to maintain the energy balance in the system. Here we report new and expanded observations showing such redistribution and confirming theoretical predictions concerning the evolution to a plasma. These measurements also indicate that, for high n states of purely cold Rydberg samples, the initial ionization process which leads to electron trapping is one involving the interactions between Rydberg atoms

    Evolution dynamics of a dense frozen Rydberg gas to plasma

    Get PDF
    Dense samples of cold Rydberg atoms have previously been observed to spontaneously evolve to a plasma, despite the fact that each atom may be bound by as much as 100 cm−1. Initially, ionization is caused by blackbody photoionization and Rydberg-Rydberg collisions. After the first electrons leave the interaction re- gion, the net positive charge traps subsequent electrons. As a result, rapid ionization starts to occur after 1 μs caused by electron-Rydberg collisions. The resulting cold plasma expands slowly and persists for tens of microseconds. While the initial report on this process identified the key issues described above, it failed to resolve one key aspect of the evolution process. Specifically, redistribution of population to Rydberg states other than the one initially populated was not observed, a necessary mechanism to maintain the energy balance in the system. Here we report new and expanded observations showing such redistribution and confirming theoretical predictions concerning the evolution to a plasma. These measurements also indicate that, for high n states of purely cold Rydberg samples, the initial ionization process which leads to electron trapping is one involving the interactions between Rydberg atoms

    Repulsively bound atom pairs in an optical lattice

    Full text link
    Throughout physics, stable composite objects are usually formed via attractive forces, which allow the constituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in a structured environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even for repulsive interactions. Here we report on the first observation of such an exotic bound state, comprised of a pair of ultracold atoms in an optical lattice. Consistent with our theoretical analysis, these repulsively bound pairs exhibit long lifetimes, even under collisions with one another. Signatures of the pairs are also recognised in the characteristic momentum distribution and through spectroscopic measurements. There is no analogue in traditional condensed matter systems of such repulsively bound pairs, due to the presence of strong decay channels. These results exemplify on a new level the strong correspondence between the optical lattice physics of ultracold bosonic atoms and the Bose-Hubbard model, a correspondence which is vital for future applications of these systems to the study of strongly correlated condensed matter systems and to quantum information.Comment: 5 pages, 4 figure

    Ultracold dense gas of deeply bound heteronuclear molecules

    Full text link
    Recently, the quest for an ultracold and dense ensemble of polar molecules has attracted strong interest. Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions, for quantum information science, and for precision measurements. However, high-density clouds of ultracold polar molecules have so far not been produced. Here, we report a key step towards this goal. Starting from an ultracold dense gas of heteronuclear 40K-87Rb Feshbach molecules with typical binding energies of a few hundred kHz and a negligible dipole moment, we coherently transfer these molecules into a vibrational level of the ground-state molecular potential bound by >10 GHz. We thereby increase the binding energy and the expected dipole moment of the 40K-87Rb molecules by more than four orders of magnitude in a single transfer step. Starting with a single initial state prepared with Feshbach association, we achieve a transfer efficiency of 84%. While dipolar effects are not yet observable, the presented technique can be extended to access much more deeply bound vibrational levels and ultimately those exhibiting a significant dipole moment. The preparation of an ultracold quantum gas of polar molecules might therefore come within experimental reach.Comment: 5 pages, 5 figure

    Three-body non-additive forces between spin-polarized alkali atoms

    Full text link
    Three-body non-additive forces in systems of three spin-polarized alkali atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio calculations. The non-additive forces are found to be large, especially near the equilateral equilibrium geometries. For Li, they increase the three-atom potential well depth by a factor of 4 and reduce the equilibrium interatomic distance by 0.9 A. The non-additive forces originate principally from chemical bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
    corecore