3,564 research outputs found

    Evolutionary implications of a high selfing rate in the freshwater snail Lymnaea truncatula.

    Get PDF
    Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula

    A Persistent High-Energy Flux from the Heart of the Milky Way : Integral's view of the Galactic Center

    Get PDF
    The Ibis/Isgri imager on Integral detected for the first time a hard X-ray source, IGR J17456-2901, located within 1' of Sgr A* over the energy range 20-100 keV. Here we present the results of a detailed analysis of ~7 Ms of Integral observations of the GC. With an effective exposure of 4.7 Ms we have obtained more stringent positional constraints on this HE source and constructed its spectrum in the range 20-400 keV. Furthermore, by combining the Isgri spectrum with the total X-ray spectrum corresponding to the same physical region around SgrA* from XMM data, and collected during part of the Integral observations, we constructed and present the first accurate wide band HE spectrum for the central arcmins of the Galaxy. Our complete analysis of the emission properties of IGR shows that it is faint but persistent with no variability above 3 sigma contrary to what was alluded to in our first paper. This result, in conjunction with the spectral characteristics of the X-ray emission from this region, suggests that the source is most likely not point-like but, rather, that it is a compact, yet diffuse, non-thermal emission region. The centroid of IGR is estimated to be R.A.=17h45m42.5, decl.=-28deg59'28'', offset by 1' from the radio position of Sgr A* and with a positional uncertainty of 1'. Its 20-400 keV luminosity at 8 kpc is L=5.4x10^35 erg/sec. Very recently, Hess detected of a source of ~TeV g-rays also located within 1' of Sgr A*. We present arguments in favor of an interpretation according to which the photons detected by Integral and Hess arise from the same compact region of diffuse emission near the central BH and that the supernova remnant Sgr A East could play an important role as a contributor of very HE g-rays to the overall spectrum from this region.Comment: 14 pages, 11 figures, Accepted for publication in Ap

    Dispersive fields in de Sitter space and event horizon thermodynamics

    Full text link
    When Lorentz invariance is violated at high energy, the laws of black hole thermodynamics are apparently no longer satisfied. To shed light on this observation, we study dispersive fields in de Sitter space. We show that the Bunch-Davies vacuum state restricted to the static patch is no longer thermal, and that the Tolman law is violated. However we also show that, for free fields at least, this vacuum is the only stationary stable state, as if it were in equilibrium. We then present a precise correspondence between dispersive effects found in de Sitter and in black hole metrics. This indicates that the consequences of dispersion on thermodynamical laws could also be similar.Comment: 19 pages. Black and White version on Phys.Rev.D serve

    Linewidth Tolerance for THz Communication Systems Using Phase Estimation Algorithm

    Get PDF
    This paper presents the impact of signal linewidth on photonic THz wireless systems using phase estimation (PE) algorithms at the receiver. The penalty associated with signal linewidth, as well as the optical linewidth requirements for systems using free-running lasers are evaluated using extensive Monte Carlo simulations for different modulation formats. The BER performance and power penalty induced by signal linewidth are also measured experimentally by varying the linewidth of the local oscillator laser. Simulation and experimental results show similar penalty trends. Differences between them are likely to be due to impairments not considered in the simulations and the THz signal linewidth being bigger than the sum of the optical linewidths of the two free-running lasers used in the experiment

    Photonically enabled communication systems beyond 1000 GHz

    Get PDF
    This paper presents a review of the recent development and research work on InP devices and their associated systems to generate and detect signal beyond 1 THz. The potential of the technology and the remaining challenges are also discussed. The paper will present recent results on laser sources that could be used as the basis of the THz sources as well as a set of potential THz emitters such as the UTC photodiode which has already permitted up to 25 muW to be emitted at 1 THz
    corecore