893 research outputs found

    Ground state at high density

    Full text link
    Weak limits as the density tends to infinity of classical ground states of integrable pair potentials are shown to minimize the mean-field energy functional. By studying the latter we derive global properties of high-density ground state configurations in bounded domains and in infinite space. Our main result is a theorem stating that for interactions having a strictly positive Fourier transform the distribution of particles tends to be uniform as the density increases, while high-density ground states show some pattern if the Fourier transform is partially negative. The latter confirms the conclusion of earlier studies by Vlasov (1945), Kirzhnits and Nepomnyashchii (1971), and Likos et al. (2007). Other results include the proof that there is no Bravais lattice among high-density ground states of interactions whose Fourier transform has a negative part and the potential diverges or has a cusp at zero. We also show that in the ground state configurations of the penetrable sphere model particles are superposed on the sites of a close-packed lattice.Comment: Note adde

    Tiling groupoids and Bratteli diagrams

    Full text link
    Let T be an aperiodic and repetitive tiling of R^d with finite local complexity. Let O be its tiling space with canonical transversal X. The tiling equivalence relation R_X is the set of pairs of tilings in X which are translates of each others, with a certain (etale) topology. In this paper R_X is reconstructed as a generalized "tail equivalence" on a Bratteli diagram, with its standard AF-relation as a subequivalence relation. Using a generalization of the Anderson-Putnam complex, O is identified with the inverse limit of a sequence of finite CW-complexes. A Bratteli diagram B is built from this sequence, and its set of infinite paths dB is homeomorphic to X. The diagram B is endowed with a horizontal structure: additional edges that encode the adjacencies of patches in T. This allows to define an etale equivalence relation R_B on dB which is homeomorphic to R_X, and contains the AF-relation of "tail equivalence".Comment: 34 pages, 4 figure

    Effective dynamics for particles coupled to a quantized scalar field

    Full text link
    We consider a system of N non-relativistic spinless quantum particles (``electrons'') interacting with a quantized scalar Bose field (whose excitations we call ``photons''). We examine the case when the velocity v of the electrons is small with respect to the one of the photons, denoted by c (v/c= epsilon << 1). We show that dressed particle states exist (particles surrounded by ``virtual photons''), which, up to terms of order (v/c)^3, follow Hamiltonian dynamics. The effective N-particle Hamiltonian contains the kinetic energies of the particles and Coulomb-like pair potentials at order (v/c)^0 and the velocity dependent Darwin interaction and a mass renormalization at order (v/c)^{2}. Beyond that order the effective dynamics are expected to be dissipative. The main mathematical tool we use is adiabatic perturbation theory. However, in the present case there is no eigenvalue which is separated by a gap from the rest of the spectrum, but its role is taken by the bottom of the absolutely continuous spectrum, which is not an eigenvalue. Nevertheless we construct approximate dressed electrons subspaces, which are adiabatically invariant for the dynamics up to order (v/c)\sqrt{\ln (v/c)^{-1}}. We also give an explicit expression for the non adiabatic transitions corresponding to emission of free photons. For the radiated energy we obtain the quantum analogue of the Larmor formula of classical electrodynamics.Comment: 67 pages, 2 figures, version accepted for publication in Communications in Mathematical Physic

    Recurrence in 2D Inviscid Channel Flow

    Full text link
    I will prove a recurrence theorem which says that any HsH^s (s>2s>2) solution to the 2D inviscid channel flow returns repeatedly to an arbitrarily small H0H^0 neighborhood. Periodic boundary condition is imposed along the stream-wise direction. The result is an extension of an early result of the author [Li, 09] on 2D Euler equation under periodic boundary conditions along both directions

    In Vitro Interaction of Lithium on Phospholipids in Human Erythrocytes

    Get PDF
    Lithium salts are used in the treatment of mania and as prophylaxis against manic depressive disorder. The aim of these studies was the in vitro investigation of the effect of lithium on phospholipids of human erythrocyte membranes. Erythrocytes were treated with lithium for 1 h. Phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylocholine (PC) were separated from erythrocyte ghosts and determined by HPLC. Blood samples from healthy adults were investigated. A very strong decrease in PC content in erythrocyte membranes due to lithium in vitro treatment was found, as well as a statistically significant increase in PI content

    Renormalization of the Inverse Square Potential

    Get PDF
    The quantum-mechanical D-dimensional inverse square potential is analyzed using field-theoretic renormalization techniques. A solution is presented for both the bound-state and scattering sectors of the theory using cutoff and dimensional regularization. In the renormalized version of the theory, there is a strong-coupling regime where quantum-mechanical breaking of scale symmetry takes place through dimensional transmutation, with the creation of a single bound state and of an energy-dependent s-wave scattering matrix element.Comment: 5 page

    The commodification of human reproductive materials.

    Get PDF
    This essay develops a framework for thinking about the moral basis for the commnodification of human reproductive nmaterials. It argues that selling and buyinlg gametes and genes is morally acceptable although there should not be a market for zygotes, embryos, or genomes. Also a market in gametes and genes shouild be regutlated in order to address concerns about the adverse social consequences of conmmodification. Originally published Journal of Medical Ethics, Vol. 24, No. 6, Dec 199

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore