11,357 research outputs found

    Coherent population trapping and dynamical instability in the nonlinearly coupled atom-molecule system

    Full text link
    We study the possibility of creating a coherent population trapping (CPT) state, involving free atomic and ground molecular condensates, during the process of associating atomic condensate into molecular condensate. We generalize the Bogoliubov approach to this multi-component system and study the collective excitations of the CPT state in the homogeneous limit. We develop a set of analytical criteria based on the relationship among collisions involving atoms and ground molecules, which are found to strongly affect the stability properties of the CPT state, and use it to find the stability diagram and to systematically classify various instabilities in the long-wavelength limit.Comment: 11 pages, 8 figure

    MeV Right-handed Neutrinos and Dark Matter

    Get PDF
    We consider the possibility of having a MeV right-handed neutrino as a dark matter constituent. The initial reason for this study was the 511 keV spectral line observed by the satellite experiment INTEGRAL: could it be due to an interaction between dark matter and baryons? Independently of this, we find a number of constraints on the assumed right-handed interactions. They arise in particular from the measurements by solar neutrino experiments. We come to the conclusion that such particles interactions are possible, and could reproduce the peculiar angular distribution, but not the rate of the INTEGRAL signal. However, we stress that solar neutrino experiments are susceptible to provide further constraints in the future.Comment: 7 pages, figure 1 changed, added reference

    Temperature dependent magnetic anisotropy in metallic magnets from an ab-initio electronic structure theory: L1_0-ordered FePt

    Full text link
    On the basis of a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy, K, with magnetisation, M, in metallic ferromagnets. We apply the theory to the high magnetic anisotropy material, L1_0-ordered FePt, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pt layering for all M and to be proportional to M^2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our results are in good agreement with recent experimental measurements on this important magnetic material.Comment: 4 pages, 2 figure

    Potential of Augmented Reality for Intelligent Transportation Systems

    Full text link
    Rapid advances in wireless communication technologies coupled with ongoing massive development in vehicular networking standards and innovations in computing, sensing, and analytics have paved the way for intelligent transportation systems (ITS) to develop rapidly in the near future. ITS provides a complete solution for the efficient and intelligent management of real-time traffic, wherein sensory data is collected from within the vehicles (i.e., via their onboard units) as well as data exchanged between the vehicles, between the vehicles and their supporting roadside infrastructure/network, among the vehicles and vulnerable pedestrians, subsequently paving the way for the realization of the futuristic Internet of Vehicles. The traditional intent of an ITS system is to detect, monitor, control, and subsequently reduce traffic congestion based on a real-time analysis of the data pertinent to certain patterns of the road traffic, including traffic density at a geographical area of interest, precise velocity of vehicles, current and predicted travelling trajectories and times, etc. However, merely relying on an ITS framework is not an optimal solution. In case of dense traffic environments, where communication broadcasts from hundreds of thousands of vehicles could potentially choke the entire network (and so could lead to fatal accidents in the case of autonomous vehicles that depend on reliable communications for their operational safety), a fall back to the traditional decentralized vehicular ad hoc network (VANET) approach becomes necessary. It is therefore of critical importance to enhance the situational awareness of vehicular drivers so as to enable them to make quick but well-founded manual decisions in such safety-critical situations.Comment: In: Lee N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham, 201

    Magnetocaloric Studies of the Peak Effect in Nb

    Full text link
    We report a magnetocaloric study of the peak effect and Bragg glass transition in a Nb single crystal. The thermomagnetic effects due to vortex flow into and out of the sample are measured. The magnetocaloric signature of the peak effect anomaly is identified. It is found that the peak effect disappears in magnetocaloric measurements at fields significantly higher than those reported in previous ac-susceptometry measurements. Investigation of the superconducting to normal transition reveals that the disappearance of the bulk peak effect is related to inhomogeneity broadening of the superconducting transition. The emerging picture also explains the concurrent disappearance of the peak effect and surface superconductivity, which was reported previously in the sample under investigation. Based on our findings we discuss the possibilities of multicriticality associated with the disappearance of the peak effect.Comment: 30 pages, 10 figure

    High-resolution projections of surface water availability for Tasmania, Australia

    Get PDF
    Changes to streamflows caused by climate change may have major impacts on the management of water for hydro-electricity generation and agriculture in Tasmania, Australia. We describe changes to Tasmanian surface water availability from 1961–1990 to 2070–2099 using high-resolution simulations. Six fine-scale (∼10 km<sup>2</sup>) simulations of daily rainfall and potential evapotranspiration are generated with the CSIRO Conformal Cubic Atmospheric Model (CCAM), a variable-resolution regional climate model (RCM). These variables are bias-corrected with quantile mapping and used as direct inputs to the hydrological models AWBM, IHACRES, Sacramento, SIMHYD and SMAR-G to project streamflows. <br><br> The performance of the hydrological models is assessed against 86 streamflow gauges across Tasmania. The SIMHYD model is the least biased (median bias = −3%) while IHACRES has the largest bias (median bias = −22%). We find the hydrological models that best simulate observed streamflows produce similar streamflow projections. <br><br> There is much greater variation in projections between RCM simulations than between hydrological models. Marked decreases of up to 30% are projected for annual runoff in central Tasmania, while runoff is generally projected to increase in the east. Daily streamflow variability is projected to increase for most of Tasmania, consistent with increases in rainfall intensity. Inter-annual variability of streamflows is projected to increase across most of Tasmania. <br><br> This is the first major Australian study to use high-resolution bias-corrected rainfall and potential evapotranspiration projections as direct inputs to hydrological models. Our study shows that these simulations are capable of producing realistic streamflows, allowing for increased confidence in assessing future changes to surface water variability

    The Burst and Transient Source Experiment Earth Occultation Technique

    Get PDF
    An Earth orbiting detector sensitive to gamma ray photons will see step-like occultation features in its counting rate when a gamma ray point source crosses the Earth's limb. This is due to the change in atmospheric attenuation of the gamma rays along the line of sight. In an uncollimated detector, these occultation features can be used to locate and monitor astrophysical sources provided their signals can be individually separated from the detector background. We show that the Earth occultation technique applied to the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) is a viable and flexible all-sky monitor in the low energy gamma ray and hard X-ray energy range (20 keV - 1 MeV). The method is an alternative to more sophisticated photon imaging devices for astronomy, and can serve well as a cost-effective science capability for monitoring the high energy sky. Here we describe the Earth occultation technique for locating new sources and for measuring source intensity and spectra without the use of complex background models. Examples of transform imaging, step searches, spectra, and light curves are presented. Systematic uncertainties due to source confusion, detector response, and contamination from rapid background fluctuations are discussed and analyzed for their effect on intensity measurements. A sky location-dependent average systematic error is derived as a function of galactic coordinates. The sensitivity of the technique is derived as a function of incident photon energy and also as a function of angle between the source and the normal to the detector entrance window. Occultations of the Crab Nebula by the Moon are used to calibrate Earth occultation flux measurements independent of possible atmospheric scattering effects.Comment: 39 pages, 24 figures. Accepted for publication in the Astrophysical Journal Supplement

    Local density of states and scanning tunneling currents in graphene

    Full text link
    We present exact analytical calculations of scanning tunneling currents in locally disordered graphene using a multimode description of the microscope tip. Analytical expressions for the local density of states (LDOS) are given for energies beyond the Dirac cone approximation. We show that the LDOS at the AA and BB sublattices of graphene are out of phase by π\pi implying that the averaged LDOS, as one moves away from the impurity, shows no trace of the 2qF2q_F (with qFq_F the Fermi momentum) Friedel modulation. This means that a STM experiment lacking atomic resolution at the sublattice level will not be able of detecting the presence of the Friedel oscillations [this seems to be the case in the experiments reported in Phys. Rev. Lett. {\bf 101}, 206802 (2008)]. The momentum maps of the LDOS for different types of impurities are given. In the case of the vacancy, 2qF2q_F features are seen in these maps. In all momentum space maps, KK and K+KK+K^\prime features are seen. The K+KK+K^\prime features are different from what is seen around zero momentum. An interpretation for these features is given. The calculations reported here are valid for chemical substitution impurities, such as boron and nitrogen atoms, as well as for vacancies. It is shown that the density of states close to the impurity is very sensitive to type of disorder: diagonal, non-diagonal, or vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the local density of states presents strong resonances at finite energies, which leads to steps in the scanning tunneling currents and to suppression of the Fano factor.Comment: 21 pages. Figures 6 and 7 are correctly displayed in this new versio

    Full-field implementation of a perfect eavesdropper on a quantum cryptography system

    Full text link
    Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.Comment: Revised after editorial and peer-review feedback. This version is published in Nat. Commun. 8 pages, 6 figures, 1 tabl
    corecore