13,617 research outputs found
Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results
The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix
An Experimentally Obtainable Heat Source Due to Absorption of Ultrasound in Biological Media
Deposition of heat as a result of loss in an ultrasonic wave may result in damage to biological tissues. The extensive use of ultrasound for diagnostic purposes during pregnancy necessitates the evaluation of thermal risk to a developing fetus during routine clinical exposures. Because of the small ultrasonic absorption coefficient in soft tissues at low megahertz frequencies, temperature elevations exceeding 1 °C are not expected from clinically employed ultrasound systems, and there is no evidence that such small temperature increases can result in deleterious effects. However, when the propagation path includes bone, which is known to be highly lossy, theoretical calculations and experimental work indicate that local heating might exceed 1 °C for realistic clinical conditions. Thus it is imperative to obtain reasonable estimates of the temperature elevation in and around fetal bone in order to assess risk. Because of a lack of measured data for the thermal and acoustic properties of fetal bone, which depend on gestational age, estimates of the temperature elevation resulting from exposure to ultrasound must be based on crude models. A measured quantity for a heat source resulting from conversion of acoustic to thermal energy in an ultrasound field is suggested. The heat source is developed from theoretical considerations, and can be used in the bioheat transfer equation to obtain better estimates of the temperature increase in fetal bone and the surrounding tissues as a result of exposure to ultrasound
Perioperative nasal and paranasal sinus considerations in transsphenoidal surgery for pituitary disease
Endoscopic endonasal skull base surgery has emerged as the treatment modality of choice for a range of skull base lesions, particularly pituitary adenomas. However, navigation and manipulation of the nasal corridor and paranasal sinuses requires that surgeons are aware of effective techniques to maximize patient outcomes and avoid sinonasal morbidity postoperatively. This paper is a narrative review aimed to provide an updated and consolidated report on the perioperative management of the nasal corridor and paranasal sinuses in the setting of endoscopic skull base surgery for pituitary disease. Anatomic variants and common surgical techniques are discussed. Post-operative complications are evaluated in detail. Understanding the structural implications of the endonasal approach to the sphenoid is crucial to opti
A review of residual stress analysis using thermoelastic techniques
Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis
that is based on infra-red thermography. The technique has proved to be extremely effective for
studying elastic stress fields and is now well established. It is based on the measurement of the
temperature change that occurs as a result of a stress change. As residual stress is essentially a
mean stress it is accepted that the linear form of the TSA relationship cannot be used to
evaluate residual stresses. However, there are situations where this linear relationship is not
valid or departures in material properties due to manufacturing procedures have enabled
evaluations of residual stresses. The purpose of this paper is to review the current status of
using a TSA based approach for the evaluation of residual stresses and to provide some
examples of where promising results have been obtained
Multilingual assessment of early child development: Analyses from repeated observations of children in Kenya.
In many low- and middle-income countries, young children learn a mother tongue or indigenous language at home before entering the formal education system where they will need to understand and speak a countrys official language(s). Thus, assessments of children before school age, conducted in a nations official language, may not fully reflect a childs development, underscoring the importance of test translation and adaptation. To examine differences in vocabulary development by language of assessment, we adapted and validated instruments to measure developmental outcomes, including expressive and receptive vocabulary. We assessed 505 2-to-6-year-old children in rural communities in Western Kenya with comparable vocabulary tests in three languages: Luo (the local language or mother tongue), Swahili, and English (official languages) at two time points, 5-6 weeks apart, between September 2015 and October 2016. Younger children responded to the expressive vocabulary measure exclusively in Luo (44%-59% of 2-to-4-year-olds) much more frequently than did older children (20%-21% of 5-to-6-year-olds). Baseline receptive vocabulary scores in Luo (β = 0.26, SE = 0.05, p < 0.001) and Swahili (β = 0.10, SE = 0.05, p = 0.032) were strongly associated with receptive vocabulary in English at follow-up, even after controlling for English vocabulary at baseline. Parental Luo literacy at baseline (β = 0.11, SE = 0.05, p = 0.045) was associated with child English vocabulary at follow-up, while parental English literacy at baseline was not. Our findings suggest that multilingual testing is essential to understanding the developmental environment and cognitive growth of multilingual children
Vanishing Fe 3d orbital moments in single-crystalline magnetite
We show detailed magnetic absorption spectroscopy results of an in situ
cleaved high quality single crystal of magnetite. In addition the experimental
setup was carefully optimized to reduce drift, self absorption, and offset
phenomena as far as possible. In strong contradiction to recently published
data, our observed orbital moments are nearly vanishing and the spin moments
are quite close to the integer values proposed by theory. This very important
issue supports the half metallic full spin polarized picture of magnetite.Comment: 7 pages, 4 figure
Hyperbolic reflections as fundamental building blocks for multilayer optics
We reelaborate on the basic properties of lossless multilayers by using
bilinear transformations. We study some interesting properties of the
multilayer transfer function in the unit disk, showing that hyperbolic geometry
turns out to be an essential tool for understanding multilayer action. We use a
simple trace criterion to classify multilayers into three classes that
represent rotations, translations, or parallel displacements. Moreover, we show
that these three actions can be decomposed as a product of two reflections in
hyperbolic lines. Therefore, we conclude that hyperbolic reflections can be
considered as the basic pieces for a deeper understanding of multilayer optics.Comment: 7 pages, 7 figures, accepted for publication in J. Opt. Soc. Am.
Further Characterization of Dopamine Release by Permeabilized PC 12 Cells
Rat pheochromocytoma cells (PC 12) permeabilized with staphylococcal α-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC 12 cells. Permeabilization with α-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC 12 cells
- …