2,248 research outputs found
Fragile DNA contributes to repeated evolution
Sequence features that affect DNA fragility might facilitate fast, repeated evolution by elevating mutation rates at genomic hotspots.Non peer reviewe
Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish
Many species change their coloration during ontogeny or even as adults. Color change hereby often serves as sexual or status signal. The cellular and subcellular changes that drive color change and how they are orchestrated have been barely understood, but a deeper knowledge of the underlying processes is important to our understanding of how such plastic changes develop and evolve. Here we studied the color change of the Malawi golden cichlid (Melanchromis auratus). Females and subordinate males of this species are yellow and white with two prominent black stripes (yellow morph; female and non-breeding male coloration), while dominant males change their color and completely invert this pattern with the yellow and white regions becoming black, and the black stripes becoming white to iridescent blue (dark morph; male breeding coloration). A comparison of the two morphs reveals that substantial changes across multiple levels of biological organization underlie this polyphenism. These include changes in pigment cell (chromatophore) number, intracellular dispersal of pigments, and tilting of reflective platelets (iridosomes) within iridophores. At the transcriptional level, we find differences in pigmentation gene expression between these two color morphs but, surprisingly, 80% of the genes overexpressed in the dark morph relate to neuronal processes including synapse formation. Nerve fiber staining confirms that scales of the dark morph are indeed innervated by 1.3 to 2 times more axonal fibers. Our results might suggest an instructive role of nervous innervation orchestrating the complex cellular and ultrastructural changes that drive the morphological color change of this cichlid species.Peer reviewe
East African cichlid fishes
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.Peer reviewe
Building and Managing a Tropical Fish Facility: A Do-It-Yourself Guide
At the core of most research in zoological disciplines, ranging from
developmental biology to genetics to behavioral biology, is the ability to keep
animals in captivity. While facilities for traditional model organisms often
benefit from well-established designs, construction of a facility for less
commonly studied organisms can present a challenge. Here, we detail the process
of designing, constructing, and operating a specialized 10,000-liter aquatic
facility dedicated to housing cichlid fishes for research purposes. The
facility, comprising 42 aquaria capable of division into up to 126
compartments, a flow-through rack for juveniles, egg tumblers for eggs and
embryos, and a microinjection setup, provides a comprehensive environment for
all life stages of cichlid fishes. We anticipate that a similar design can be
also used also for other tropical teleost fishes. This resource is designed to
promote increased efficiency and success in cichlid fish breeding and research,
thereby offering significant insights for aquatic research labs seeking to
build or optimize their own infrastructures.Comment: 14 pages, 9 figures, 2 table
Developmental and Cellular Basis of Vertical Bar Color Patterns in the East African Cichlid Fish Haplochromis latifasciatus
The East African adaptive radiations of cichlid fishes are renowned for their diversity in coloration. Yet, the developmental basis of pigment pattern formation remains largely unknown. One of the most common melanic patterns in cichlid fishes are vertical bar patterns. Here we describe the ontogeny of this conspicuous pattern in the Lake Kyoga species Haplochromis latifasciatus. Beginning with the larval stages we tracked the formation of this stereotypic color pattern and discovered that its macroscopic appearance is largely explained by an increase in melanophore density and accumulation of melanin during the first 3 weeks post-fertilization. The embryonal analysis is complemented with cytological quantifications of pigment cells in adult scales and the dermis beneath the scales. In adults, melanic bars are characterized by a two to threefold higher density of melanophores than in the intervening yellow interbars. We found no strong support for differences in other pigment cell types such as xanthophores. Quantitative PCRs for twelve known pigmentation genes showed that expression of melanin synthesis genes tyr and tyrp1a is increased five to sixfold in melanic bars, while xanthophore and iridophore marker genes are not differentially expressed. In summary, we provide novel insights on how vertical bars, one of the most widespread vertebrate color patterns, are formed through dynamic control of melanophore density, melanin synthesis and melanosome dispersal.Peer reviewe
Different Sources of Allelic Variation Drove Repeated Color Pattern Divergence in Cichlid Fishes
The adaptive radiations of East African cichlid fish in the Great Lakes Victoria, Malawi, and Tanganyika are well known for their diversity and repeatedly evolved phenotypes. Convergent evolution of melanic horizontal stripes has been linked to a single locus harboring the gene agouti-related peptide 2 (agrp2). However, where and when the causal variants underlying this trait evolved and how they drove phenotypic divergence remained unknown. To test the alternative hypotheses of standing genetic variation versus de novo mutations (independently originating in each radiation), we searched for shared signals of genomic divergence at the agrp2 locus. Although we discovered similar signatures of differentiation at the locus level, the haplotypes associated with stripe patterns are surprisingly different. In Lake Malawi, the highest associated alleles are located within and close to the 5′ untranslated region of agrp2 and likely evolved through recent de novo mutations. In the younger Lake Victoria radiation, stripes are associated with two intronic regions overlapping with a previously reported cis-regulatory interval. The origin of these segregating haplotypes predates the Lake Victoria radiation because they are also found in more basal riverine and Lake Kivu species. This suggests that both segregating haplotypes were present as standing genetic variation at the onset of the Lake Victoria adaptive radiation with its more than 500 species and drove phenotypic divergence within the species flock. Therefore, both new (Lake Malawi) and ancient (Lake Victoria) allelic variation at the same locus fueled rapid and convergent phenotypic evolution.Peer reviewe
Functional conservation and divergence of color-pattern-related agouti family genes in teleost fishes
While color patterns are highly diverse across the animal kingdom, certain patterns such as countershading and stripe patterns have evolved repeatedly. Across vertebrates, agouti-signaling genes have been associated with the evolution of both patterns. Here we study the functional conservation and divergence by investigating the expression patterns of the two color-pattern-related agouti-signaling genes, agouti-signaling protein 1 (asip1) and agouti-signaling protein 2b (asip2b, also known as agrp2) in Teleostei. We show that the dorsoventral expression profile of asip1 and the role of the "stripe repressor" asip2b are shared across multiple teleost lineages and uncover a previously unknown association between stripe-interstripe patterning and both asip1 and asip2b expression. In some species, including the zebrafish (Danio rerio), these two genes show complementary and overlapping expression patterns in line with functional redundancy. Our results thus suggest how conserved and novel functions of agouti-signaling genes might have shaped the evolution of color patterns across teleost fishes.Peer reviewe
Of bars and stripes : A Malawi cichlid hybrid cross provides insights into genetic modularity and evolution of modifier loci underlying colour pattern diversification
Abstract Understanding the origins of phenotypic diversity among closely related species remains an important largely unsolved question in evolutionary biology. With over 800 species, Lake Malawi haplochromine cichlid fishes are a prominent example of extremely fast evolution of diversity including variation in coloration. Previously, a single major effect gene, agrp2 (asip2b), has been linked to evolutionary losses and gains of horizontal stripe patterns in cichlids, but it remains unknown what causes more fine-scale variation in the number and continuity of the stripes. Also, the genetic basis of the most common color pattern in African cichlids, vertical bars, and potential interactions between the two color patterns remain unknown. Based on a hybrid cross of the horizontally striped Lake Malawi cichlid Pseudotropheus cyaneorhabdos and the vertically barred species Chindongo demasoni we investigated the genetic basis of both color patterns. The distribution of phenotypes in the F2 generation of the cross indicates that horizontal stripes and vertical bars are independently inherited patterns that are caused by two sets of genetic modules. While horizontal stripes are largely controlled by few major effect loci, vertical bars are a highly polygenic trait. Horizontal stripes show substantial variation in the F2 generation that, interestingly, resemble naturally occurring phenotypes found in other Lake Malawi cichlid species. Quantitative trait loci (QTL) mapping of this cross reveals known (agrp2) and unknown loci underlying horizontal stripe patterns. These findings provide novel insights into the incremental fine-tuning of an adaptive trait that diversified through the evolution of additional modifier loci.Peer reviewe
Comparative ontogenetic and transcriptomic analyses shed light on color pattern divergence in cichlid fishes
Funding Information: This study was supported by the Baden-Württemberg Foundation (to Claudius F. Kratochwil), grants by the Deutsche Forschungsgemeinschaft (DFG) to Axel Meyer, Claudius F. Kratochwil (KR 4670/2-1 and KR 4670/4-1), and Paolo Franchini (FR 3399/1-1), and a stipend from the China Scholarship Council (CSC, to Yipeng Liang). We thank Max Grauvogl who conducted the qPCR experiments during his bachelor thesis. Open Access funding enabled and organized by Projekt DEAL. Funding Information: This study was supported by the Baden‐Württemberg Foundation (to Claudius F. Kratochwil), grants by the Deutsche Forschungsgemeinschaft (DFG) to Axel Meyer, Claudius F. Kratochwil (KR 4670/2‐1 and KR 4670/4‐1), and Paolo Franchini (FR 3399/1‐1), and a stipend from the China Scholarship Council (CSC, to Yipeng Liang). We thank Max Grauvogl who conducted the qPCR experiments during his bachelor thesis. Open Access funding enabled and organized by Projekt DEAL. Publisher Copyright: © 2022 The Authors. Evolution & Development published by Wiley Periodicals LLC.Stripe patterns are a striking example for a repeatedly evolved color pattern. In the African adaptive radiations of cichlid fishes, stripes evolved several times independently. Previously, it has been suggested that regulatory evolution of a single gene, agouti-related-peptide 2 (agrp2), explains the evolutionary lability of this trait. Here, using a comparative transcriptomic approach, we performed comparisons between (adult) striped and nonstriped cichlid fishes of representatives of Lake Victoria and the two major clades of Lake Malawi (mbuna and non-mbuna lineage). We identify agrp2 to be differentially expressed across all pairwise comparisons, reaffirming its association with stripe pattern divergence. We therefore also provide evidence that agrp2 is associated with the loss of the nonstereotypic oblique stripe of Mylochromis mola. Complementary ontogenetic data give insights into the development of stripe patterns as well as vertical bar patterns that both develop postembryonically. Lastly, using the Lake Victoria species pair Haplochromis sauvagei and Pundamilia nyererei, we investigated the differences between melanic and non-melanic regions to identify additional genes that contribute to the formation of stripes. Expression differences—that most importantly also do not include agrp2—are surprisingly small. This suggests, at least in this species pair, that the stripe phenotype might be caused by a combination of more subtle transcriptomic differences or cellular changes without transcriptional correlates. In summary, our comprehensive analysis highlights the ontogenetic and adult transcriptomic differences between cichlids with different color patterns and serves as a basis for further investigation of the mechanistic underpinnings of their diversification.Peer reviewe
- …