5,401 research outputs found

    Non-Gaussianity from extragalactic point-sources

    Full text link
    The population of compact extragalactic sources contribute to the non-Gaussianity at Cosmic Microwave Background frequencies. We study their non-Gaussianity using publicly available full-sky simulations. We introduce a parametrisation to visualise efficiently the bispectrum and we describe the scale and frequency dependences of the bispectrum of radio and IR point-sources. We show that the bispectrum is well fitted by an analytical prescription. We find that the clustering of IR sources enhances their non-Gaussianity by several orders of magnitude, and that their bispectrum peaks in the squeezed triangles. Examining the impact of these sources on primordial non-Gaussianity estimation, we find that radio sources yield an important positive bias to local fNL at low frequencies but this bias is efficiently reduced by masking detectable sources. IR sources produce a negative bias at high frequencies, which is not dimmed by the masking, as their clustering is dominated by faint sources.Comment: 4pages, 2 figures, 2 tables. Contribution to the proceedings of the International Conference on Gravitation and Cosmology, Goa, December 201

    Nonaxisymmetric Neutral Modes in Rotating Relativistic Stars

    Get PDF
    We study nonaxisymmetric perturbations of rotating relativistic stars. modeled as perfect-fluid equilibria. Instability to a mode with angular dependence exp(imϕ)\exp(im\phi) sets in when the frequency of the mode vanishes. The locations of these zero-frequency modes along sequences of rotating stars are computed in the framework of general relativity. We consider models of uniformly rotating stars with polytropic equations of state, finding that the relativistic models are unstable to nonaxisymmetric modes at significantly smaller values of rotation than in the Newtonian limit. Most strikingly, the m=2 bar mode can become unstable even for soft polytropes of index N1.3N \leq 1.3, while in Newtonian theory it becomes unstable only for stiff polytropes of index N0.808N \leq 0.808. If rapidly rotating neutron stars are formed by the accretion-induced collapse of white dwarfs, instability associated with these nonaxisymmetric, gravitational-wave driven modes may set an upper limit on neutron-star rotation. Consideration is restricted to perturbations that correspond to polar perturbations of a spherical star. A study of axial perturbations is in progress.Comment: 57 pages, 9 figure

    Kink Solution in a Fluid Model of Traffic Flows

    Full text link
    Traffic jam in a fluid model of traffic flows proposed by Kerner and Konh\"auser (B. S. Kerner and P. Konh\"auser, Phys. Rev. E 52 (1995), 5574.) is analyzed. An analytic scaling solution is presented near the critical point of the hetero-clinic bifurcation. The validity of the solution has been confirmed from the comparison with the simulation of the model.Comment: RevTeX v3.1, 6 pages, and 2 figure

    Modeling Hybrid Stars with an SU(3) non-linear sigma model

    Full text link
    We study the behavior of hybrid stars using an extended hadronic and quark SU(3) non-linear sigma model. The degrees of freedom change naturally, in this model, from hadrons to quarks as the density/temperature increases. At zero temperature, we reproduce massive neutron stars containing a core of hybrid matter of 2 km for the non-rotating case and 1.18 km and 0.87 km, in the equatorial and polar directions respectively, for stars rotating at the Kepler frequency (physical cases lie in between). The cooling of such stars is also analyzed.Comment: Revised version, references and figures added. Accepted for publication in Physical Review

    Non-Gaussianity Consistency Relation for Multi-field Inflation

    Full text link
    While detection of the "local form" bispectrum of primordial perturbations would rule out all single-field inflation models, multi-field models would still be allowed. We show that multi-field models described by the δN\delta N formalism obey an inequality between fNLf_{\rm NL} and one of the local-form {\it trispectrum} amplitudes, τNL\tau_{\rm NL}, such that τNL>12(65fNL)2\tau_{\rm NL}>\frac12(\frac65f_{\rm NL})^2 with a possible logarithmic scale dependence, provided that 2-loop terms are small. Detection of a violation of this inequality would rule out most of multi-field models, challenging inflation as a mechanism for generating the primoridal perturbations.Comment: 5 pages. Accepted for publication in Physical Review Letter

    A case based discussion on the role of Design Competences in Social Innovation.

    Get PDF
    Thus far, many contributions in the field of design have described design’s role in the life cycle of a successful Social Innovation (SI). Design, in fact, has been proposed by many authors to be the most suitable approach to developing SI initiatives from their start-up to release. In particular, some authors have proposed Design Thinking as the best methodology for the development of new SIs; while others, promote Participatory Design as the best method to support SIs, heralding its process of collaboration, networking and coproduction. Nevertheless, many research results have demonstrated that the need to find a balance between social and economic objectives is one of the main barriers to SI. This paper discusses these general results as they have been elaborated in the context of the SIMPACT European project and focuses on the value of design competences to better design SI products, services and brands, which is explored through the discussion of two well established cases of SI in Europe

    Gravitational Lensing Effect on the Two-point Correlation of Hotspots in the Cosmic Microwave Background

    Get PDF
    We investigate the weak gravitational lensing effect due to the large-scale structure of the universe on two-point correlations of local maxima ({\em hotspots}) in the 2D sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics as most inflationary scenarios predict, the hotspots are discretely distributed with some {\em characteristic} angular separations on the last scattering surface owing to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hotspots which are separated with the characteristic scale to be observed with various separations. We found that the lensing fairly smoothes the oscillatory features of the two-point correlation function of hotspots. This indicates that the hotspots correlations can be a new statistical tool for measuring shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.Comment: 6 pages, 2 figures; replaced with published versio

    Innermost stable circular orbits around relativistic rotating stars

    Get PDF
    We investigate the innermost stable circular orbit (ISCO) of a test particle moving on the equatorial plane around rotating relativistic stars such as neutron stars. First, we derive approximate analytic formulas for the angular velocity and circumferential radius at the ISCO making use of an approximate relativistic solution which is characterized by arbitrary mass, spin, mass quadrupole, current octapole and mass 242^4-pole moments. Then, we show that the analytic formulas are accurate enough by comparing them with numerical results, which are obtained by analyzing the vacuum exterior around numerically computed geometries for rotating stars of polytropic equation of state. We demonstrate that contribution of mass quadrupole moment for determining the angular velocity and, in particular, the circumferential radius at the ISCO around a rapidly rotating star is as important as that of spin.Comment: 12 pages, 2 figures, accepted for publication in Phys. Rev.
    corecore